亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v5-OBB與CT的浸種玉米胚乳裂紋檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFD1002401)


Endosperm Crack Detection Method for Seed Dipping Maize Based on YOLO v5-OBB and CT Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    浸種是玉米生產(chǎn)中重要的播前增種技術(shù),對浸種過程中裂紋的高效檢測是分析玉米胚乳裂紋變化規(guī)律的基礎(chǔ),是優(yōu)良品種性狀選育的關(guān)鍵之一,尚存在內(nèi)部胚乳裂紋不可見、自動化檢測程度不高等困難。基于CT掃描技術(shù),在YOLO v5n檢測網(wǎng)絡的基礎(chǔ)上,設(shè)計了YOLO v5-OBB旋轉(zhuǎn)目標檢測網(wǎng)絡,其中OBB為有向目標邊框,該網(wǎng)絡使用旋轉(zhuǎn)矩形框代替普通矩形框,并在Backbone部分加入位置注意力模塊(CA),同時采用傾斜非極大值抑制算法(Skew-NMS)進行非極大值抑制得到最終預測框,以此實現(xiàn)長寬比大、方向不一的玉米胚乳裂紋檢測。經(jīng)過300次迭代訓練,模型在測試集上的精確率P為94.2%,召回率R為81.7%,平均精度(AP)為88.2%,模型內(nèi)存占用量為4.21MB,單幅圖像平均檢測時間為0.01s,與SASM、S2A-Net和ReDet旋轉(zhuǎn)目標檢測網(wǎng)絡相比,AP分別提高15.0、16.9、7.0個百分點,單幅圖像平均檢測時間分別減少0.19、0.22、0.46s,同時YOLO v5-OBB模型內(nèi)存占用量分別為SASM、S2A-Net和ReDet模型的1.50%、1.43%和1.73%,與采用水平矩形框標注的YOLO v5網(wǎng)絡相比,AP提高0.6個百分點,模型大小減小0.19MB,單幅圖像平均檢測時間不變,兩者均為0.01s。將YOLO v5-OBB網(wǎng)絡獲取裂紋目標框坐標信息后得到的裂紋長度與在DragonflyEZ軟件中得到的裂紋真實長度相比,兩者絕對誤差為0.04mm,相對誤差為0.93%。對不同CT灰度分布情況下玉米胚乳裂紋檢測結(jié)果表明,該模型對較小灰度、較大灰度、混合灰度3種玉米胚乳裂紋圖像的P分別為100%、100%、93.3%,R分別為100%、82.4%和79.8%,AP分別為99.5%、91.2%和86.8%。結(jié)果表明,所設(shè)計模型能有效實現(xiàn)玉米胚乳裂紋的檢測,同時模型魯棒性高,內(nèi)存占用量小,可為玉米浸種過程胚乳裂紋的自動監(jiān)測提供借鑒。

    Abstract:

    Seed immersion is an important pre-sowing seed enhancement technology in maize production, and efficient detection of cracks during seed immersion is the basis for analyzing the change pattern of endosperm cracks during seed immersion, which is one of the keys to the selection and breeding of good varieties of traits, and there are still difficulties such as internal endosperm cracks are not visible and the degree of automation is not high. Based on CT scanning technology, a rotating target detection network named YOLO v5-OBB was designed based on YOLO v5n detection network, where OBB used rotating rectangular box instead of normal rectangular box and added CA model in the Backbone part. The network used a rotating rectangular box instead of a normal rectangular box, and added CA model in the Backbone part, and also used Skew-NMS for non-maximal suppression to obtain the final prediction box, so as to achieve the detection of corn endosperm cracks with relatively large length and width and different directions. After 300 iterations of training, the model had a precision of 94.2%, a recall of 81.7%, and an average precision of 88.2% on the test set, with model size of 4.21MB and average detection time of 0.01s for a single image, which improved the AP value by 15.0, 16.9, and 7.0 percentage points compared with the SASM, S2A-Net, and ReDet models, respectively, and the average detection time of single image was reduced by 0.19s, 0.22s, and 0.46s, respectively, while the YOLO v5-OBB model size was 1.50%, 1.43%, and 1.73% of the SASM, S2A-Net, and ReDet models, respectively, with an increase in AP value of 0.6 percentage points, a decrease in model size of 0.19MB and an unchanged average detection time of 0.01s for a single image compared with that of the YOLO v5 network with horizontal rectangular box labeling. Comparing the crack length information obtained from the YOLO v5-OBB network after obtaining the crack target frame coordinate information with the real length of the crack obtained in DragonflyEZ software, the absolute error of both was 0.04mm and the relative error was 0.93%. The results on the detection of corn endosperm cracks with different CT gray value distributions showed that the model had P values of 100%, 100%, and 93.3%, R values of 100%, 82.4%, and 79.8%, and AP values of 99.5%, 91.2%, and 86.8% for the three types of corn endosperm crack images with smaller gray values, larger gray values, and mixed gray values, respectively. The results showed that the designed model can effectively achieve the detection of corn endosperm cracks, and at the same time, the model was highly robust and took up little storage, which can provide necessary technical support for the automatic monitoring of corn endosperm cracks during seed dipping.

    參考文獻
    相似文獻
    引證文獻
引用本文

宋懷波,焦義濤,華志新,李嶸,許興時.基于YOLO v5-OBB與CT的浸種玉米胚乳裂紋檢測[J].農(nóng)業(yè)機械學報,2023,54(3):394-401,439. SONG Huaibo, JIAO Yitao, HUA Zhixin, LI Rong, XU Xingshi. Endosperm Crack Detection Method for Seed Dipping Maize Based on YOLO v5-OBB and CT Technology[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):394-401,439.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期: