亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜圖譜融合技術(shù)的英德紅茶等級(jí)快速無(wú)損判別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市自然科學(xué)基金項(xiàng)目(4222043)、廣東省農(nóng)業(yè)科學(xué)院院長(zhǎng)基金項(xiàng)目(202032)、廣州市科技計(jì)劃項(xiàng)目(202002020079)、中國(guó)輕工業(yè)工業(yè)互聯(lián)網(wǎng)與大數(shù)據(jù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放項(xiàng)目(IIBD-2021-KF09)和研究生科研能力提升計(jì)劃項(xiàng)目


Fast Nondestructive Discrimination of Yingde Black Tea Grade Based on Fusion of Image Spectral Features of Hyperspectral Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    茶葉等級(jí)評(píng)價(jià)是檢測(cè)茶葉品質(zhì)的一項(xiàng)重要技術(shù)指標(biāo)。通過(guò)提取紅茶高光譜成像技術(shù)下的圖像特征和光譜特征,構(gòu)建一種基于圖譜融合方法、適用于英德紅茶等級(jí)評(píng)價(jià)的快速無(wú)損判別模型。首先制備3種不同等級(jí)的紅茶樣本,采用t分布-隨機(jī)近鄰嵌入和主成分分析對(duì)光譜數(shù)據(jù)進(jìn)行降維可視化分析,然后從影響內(nèi)在品質(zhì)角度用連續(xù)投影法提取每種化學(xué)值的特征波長(zhǎng),通過(guò)多模型共識(shí)策略和競(jìng)爭(zhēng)性自適應(yīng)重加權(quán)算法-連續(xù)投影法篩選得出表征其內(nèi)在品質(zhì)的最佳特征波長(zhǎng)組合,并建立基于遺傳算法優(yōu)化支持向量機(jī)的等級(jí)判別模型;其模型的訓(xùn)練集準(zhǔn)確率為88%,預(yù)測(cè)集準(zhǔn)確率為78.33%。為了融合外形紋理差異,先提取最佳特征波長(zhǎng)組合對(duì)應(yīng)的高光譜圖像;采用圖像掩膜消除背景的干擾和采用圖像主成分分析消除多波長(zhǎng)圖像間的冗余信息,然后采用灰度共生矩陣和局部二值化算法提取主成分前三維主成分圖像與特征光譜融合,并建立基于特征融合的遺傳算法優(yōu)化支持向量機(jī)等級(jí)判別模型,且基于第三主成分圖像特征融合模型判別效果最佳,訓(xùn)練集準(zhǔn)確率提升至98%,預(yù)測(cè)集準(zhǔn)確率提升至96.67%。

    Abstract:

    Tea grade evaluation is an important technical index to detect the quality of tea leaves. By extracting image features and spectral features under hyperspectral imaging technique of black tea, a fast and nondestructive discriminative model based on the map fusion method was constructed to be applicable to the grade evaluation of Yingde black tea. Firstly, three different grades of black tea samples were prepared, and the spectral data were visualized by dimensionality reduction using t distributed stochastic neighbor embedding and principal component analysis, and then the characteristic wavelengths of each chemical value were extracted from the perspective of influencing the intrinsic quality by successive projections algorithm, followed by the best combination of characteristic wavelengths characterizing its intrinsic quality by multi-model consensus strategy and competitive adaptive reweighted sampling-successive projections algorithm screening, followed by the establishment of a genetic algorithm optimization support vector machine based grade discrimination model, and the accuracy of its model was 88% for the training set and 78.33% for the prediction set. In order to fuse the shape and texture differences, the hyperspectral image corresponding to the best feature wavelength combination were firstly extracted;and then the image mask was used to eliminate the interference of the background and the principal component analysis was used to eliminate the redundant information between multi-wavelength images, and then the gray level covariance matrix and local binary pattern algorithms were used to extract the three-dimensional principal component images before principal component analysis and fuse them with feature spectra, moreover, the genetic algorithm optimized support vector machine grade discrimination model based on feature fusion was established, and the best discrimination effect was based on the third principal component image feature fusion model, which the accuracy of the training set was improved to be 98% and the accuracy of the prediction set was improved to be 96.67%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉翠玲,秦冬,凌彩金,孫曉榮,郜禮陽(yáng),昝佳睿.基于高光譜圖譜融合技術(shù)的英德紅茶等級(jí)快速無(wú)損判別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(3):402-410. LIU Cuiling, QIN Dong, LING Caijin, SUN Xiaorong, GAO Liyang, ZAN Jiarui. Fast Nondestructive Discrimination of Yingde Black Tea Grade Based on Fusion of Image Spectral Features of Hyperspectral Technique[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):402-410.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期: