亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)的移動端缺陷蛋檢測系統(tǒng)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(32072302、31871863)和揚(yáng)州市科技計劃項目(YZ2020047)


Detection System Study of Defective Egg on Mobile Devices Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對缺陷雞蛋差異性大、人工檢測主觀性強(qiáng)、實時性差,消費(fèi)者存在食品安全隱患等問題,提出一種基于深度學(xué)習(xí)的移動端缺陷蛋無損檢測系統(tǒng),實現(xiàn)對裂紋蛋和血斑蛋的實時檢測。首先,建立改進(jìn)的輕量級卷積神經(jīng)網(wǎng)絡(luò)MobileNetV2_CA模型,以MobileNetV2原網(wǎng)絡(luò)為基礎(chǔ),通過嵌入坐標(biāo)注意力機(jī)制、調(diào)整寬度因子、遷移學(xué)習(xí)等操作對其進(jìn)行優(yōu)化,并進(jìn)行PC端檢測對比試驗。試驗結(jié)果表明:建立的MobileNetV2_CA模型驗證集準(zhǔn)確率達(dá)93.93%,召回率為94.73%,單個雞蛋平均檢測時間為9.9ms,對比改進(jìn)前MobileNetV2模型準(zhǔn)確率提升3.60個百分點、召回率提4.30個百分點、檢測時間縮短2.62ms;MobileNetV2_CA模型的參數(shù)量為2.36×106,較原MobileNetV2網(wǎng)絡(luò)模型降低31.59%。然后,利用NCNN深度學(xué)習(xí)框架對MobileNetV2_CA模型進(jìn)行訓(xùn)練,并通過格式轉(zhuǎn)換部署至Android移動端,進(jìn)行NCNN深度學(xué)習(xí)訓(xùn)練模型的移動端檢測驗證,及其與TensorFlow Lite深度學(xué)習(xí)模型的對比分析。試驗結(jié)果表明:NCNN深度學(xué)習(xí)模型對缺陷蛋平均識別準(zhǔn)確率達(dá)到92.72%,單個雞蛋平均檢測時間為22.1ms,庫文件大小僅2.7MB,均優(yōu)于TensorFlow Lite,更能滿足實際應(yīng)用要求。

    Abstract:

    Aiming at the problems of large diversity of defective eggs, as well as the strong subjectivity and poor real-time detection of artificial detection, and the potential risk of food safety for end-consumers, a non-destructive testing system based on deep learning for defective eggs on mobile device was proposed to realize real-time detection of cracked eggs and bloody eggs. An improved lightweight convolutional neural network MobileNetV2_CA model was firstly established. MobileNetV2 network was taken as the original framework, it was further optimized by embedding coordinate attention mechanism, adjusting width factor, transfer learning and other parameters. The PC detection was also performed for comparison. Results showed that the MobileNetV2_CA model presented the validation accuracy of 93.93%, the recall rate of 94.73%, and the average detection time of 9.9ms for a single egg, which was 3.60 percentage points higher, 4.30 percentage points higher, and 2.62ms shorter than the original MobileNetV2 model, respectively. The parameter score of MobileNetV2_CA model was only 2.36×106, which was 31.59% lower than the original MobileNetV2 network model. In addition, the NCNN deep learning framework was used to train MobileNetV2_CA model, which was further applied to Android mobile terminal through format conversion. The verification of mobile terminal detection of NCNN deep learning training model was investigated and compared with TensorFlow Lite deep learning model. Results showed that the NCNN deep learning model had an average recognition accuracy of 92.72%, an average detection time of 22.1ms for a single egg, and the library file size of 2.7MB, indicating its better performance than TensorFlow Lite and meeting the requirement of practical applications. The effectiveness of the proposed system based on deep learning was finally demonstrated.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

范維,胡建超,王巧華,湯文權(quán).基于深度學(xué)習(xí)的移動端缺陷蛋檢測系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(3):411-420. FAN Wei, HU Jianchao, WANG Qiaohua, TANG Wenquan. Detection System Study of Defective Egg on Mobile Devices Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):411-420.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-05-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-10
  • 出版日期: