亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進YOLOF模型的田間農作物害蟲檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61863011、32071912)、廣東省鄉(xiāng)村振興戰(zhàn)略專項項目(2020KJ261)、廣州市科技計劃項目(202002020016)和廣州市基礎研究計劃項目(202102080337)


Insect Pest Detection of Field Crops Based on Improved YOLOF Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    田間害蟲圖像數據采集困難,并且傳統(tǒng)的檢測模型大多使用復雜的特征金字塔(Feature pyramid network,FPN)結構提升精度,這在一定程度上影響了檢測的實時性。為此,本研究通過設計誘蟲燈裝置構建害蟲數據集FieldPest5,并且對無FPN結構的檢測器YOLOF進行改進,提出兼顧檢測精度和效率的害蟲檢測模型YOLOF_PD。首先,增加Cutout數據增強方法緩解害蟲圖像中的遮擋問題,并且使用CIoU損失函數獲得更好的框回歸位置;其次,在原有坐標注意力機制(Coordinate attention,CA)的全局平均池化(Global average pooling,GAP)路徑中增加全局最大池化(Global max pooling,GMP)路徑,并且使用可學習參數自適應更新不同路徑的權重,提出自適應坐標注意力機制(Adaptive coordinate attention,ACA),增強模型的信息表征能力;最后,對YOLOF膨脹編碼器中的Projector和Residual模塊進行改進,在Projector模塊的3×3卷積后引入ACA注意力機制,在Residual模塊中融合3×3的深度可分離卷積和1×1的逐點卷積,提出Dilated_Dwise_ACA編碼器,提高YOLOF對小尺度害蟲的檢測性能。實驗結果表明:改進后的YOLOF_PD模型在FieldPest5測試集上的平均精度均值(Mean average precision,mAP)為 93.7%,較改進前提升2.1個百分點,并且檢測時圖像傳輸速率為42.4f/s,能夠滿足害蟲快速檢測的要求。對比Cascade R-CNN、RetinaNet、ATSS等模型,YOLOF_PD模型在檢測效果和檢測速度方面均取得了良好性能。

    Abstract:

    The wide distribution of pests in the field leads to difficulties in image data acquisition, and most of the traditional detection models use complex feature pyramid network (FPN) to enhance detection accuracy, which affects the real-time detection to some extent. To this end, the trap lamp device was designed to construct the pest dataset FieldPest5 and the detector YOLOF, which does not use the FPN structure, was improved to propose a pest detection model YOLOF_PD that balanced detection accuracy and efficiency. Firstly, the Cutout data augmentation method was added to alleviate the occlusion problem in the pest images, and the complete intersection over union (CIoU) loss function was used to obtain better box regression positions. Secondly, the adaptive coordinate attention (ACA) mechanism was proposed to enhance the information representation capability of the model. Specifically, the global maximum pooling (GMP) path was added to the global average pooling (GAP) path of the original coordinate attention (CA) mechanism, and the weights of different paths were updated adaptively by using learnable parameters. Finally, the Dilated_Dwise_ACA encoder was proposed to improve the performance of YOLOF for smallscale pest detection. Improvements were made to the projector and residual modules in the dilated encoder. The ACA attention mechanism was introduced after the 3×3 convolution in the projector module, and in the Residual module 3×3 depth-separable convolution and 1×1 pointwise convolution were fused. The experimental results showed that the improved YOLOF_PD model mAP achieved 93.7% on the FieldPest5 test set, which was 2.1 percentage points higher than that of the model before improvement, and the detection speed was 42.4f/s, which can meet the requirements of fast pest detection. Compared with Cascade R-CNN, RetinaNet and ATSS, YOLOF_PD achieved good performance in terms of detection effect and detection speed. The research result can lay a solid foundation for field pest data collection as well as real-time pest detection. 

    參考文獻
    相似文獻
    引證文獻
引用本文

彭紅星,徐慧明,高宗梅,田興國,鄧倩婷,咸春龍.基于改進YOLOF模型的田間農作物害蟲檢測方法[J].農業(yè)機械學報,2023,54(4):285-294,303. PENG Hongxing, XU Huiming, GAO Zongmei, TIAN Xingguo, DENG Qianting, XIAN Chunlong. Insect Pest Detection of Field Crops Based on Improved YOLOF Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):285-294,303.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-06-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-06
  • 出版日期:
文章二維碼