亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

復(fù)雜果園場(chǎng)景中基于DBP的激光回環(huán)檢測(cè)算法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

上海市科技興農(nóng)項(xiàng)目(2020-02-08-00-09-F01466)


Loop Closure Detection in Complex Orchards Based on Density Binary Pattern
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為減少果園機(jī)器人在定位與建圖過(guò)程中產(chǎn)生的累積漂移誤差,本文提出一種基于密度二進(jìn)制模式(Density binary pattern,DBP)描述子的激光回環(huán)檢測(cè)算法。算法將點(diǎn)云空間分割為二進(jìn)制單元塊,提取包含點(diǎn)云高度與密度信息的全局描述子DBP。針對(duì)復(fù)雜果園的大尺度、高度相似、非結(jié)構(gòu)化特性,基于兩階段搜索算法實(shí)現(xiàn)高效回環(huán)檢測(cè)?;跉v史幀DBP的環(huán)因子檢索K近鄰候選幀,確認(rèn)與當(dāng)前幀DBP描述子最相似的候選幀為最終目標(biāo)回環(huán)索引。在具有多個(gè)回環(huán)事件的復(fù)雜果園場(chǎng)景中,DBP-LeGO-LOAM算法軌跡的均方根誤差與標(biāo)準(zhǔn)差分別為0.24m與0.09m,相對(duì)LeGO-LOAM中基于距離的回環(huán)檢測(cè)算法分別減少81%與91%。實(shí)驗(yàn)證明,本文方法對(duì)多回環(huán)復(fù)雜果園環(huán)境具有更好的適應(yīng)性,為提高果園機(jī)器人建圖與定位精度提供了有效解決方案。

    Abstract:

    In order to reduce the cumulative drift error of the orchard robot in simultaneous localization and mapping(SLAM), a loop closure detection algorithm was proposed based on density binary pattern(DBP). The LiDAR scanning was divided into eight-bit binary bins along the vertical height direction. If the number of point clouds in the bin exceeded five, it was considered a valid scan, and the bin value was set to be 1, otherwise 0. Further, the eight-bit data were projected to construct the DBP descriptor. The DBP descriptor contained point cloud density and height information and had a significant distinguishing effect on tall fruit trees and low shrubs. A two-stage search algorithm was utilized to ensure the task real-time requirements in the large-scale orchard. Firstly, to extract a low-dimensional ring factor vector of DBP, the K-nearest neighbor candidate loop closure frames were quickly found in the K-dimensional tree(KD-Tree), which was constructed by the ring factors. The maximum similarity between the candidates and the query frame was obtained. If the distance threshold condition was met, the candidate frame was considered an effective target loop closure. The experiment was carried out in three orchards of different scales. In the orchard scene with multiple loop closure events, the root mean square error and standard deviation of the DBP-LeGO-LOAM trajectory were 0.24m and 0.09m, compared with the LeGO-LOAM algorithm which had been reduced 81% and 91% respectively. It provided an effective solution for improving the mapping and localization accuracy of orchard robots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

歐芳,苗中華,李楠,何創(chuàng)新,李云輝.復(fù)雜果園場(chǎng)景中基于DBP的激光回環(huán)檢測(cè)算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):29-35. OU Fang, MIAO Zhonghua, LI Nan, HE Chuangxin, LI Yunhui. Loop Closure Detection in Complex Orchards Based on Density Binary Pattern[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):29-35.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-08-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼