亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機多光譜遙感和機器學習的苧麻理化性狀估測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0201106)、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-16-E11)、國家自然科學基金項目(31471543)和湖南省自然科學基金項目(2021JJ60011)


Estimation of Ramie Physicochemical Property Based on UAV Multi-spectral Remote Sensing and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    苧麻生理生化性狀是其遺傳基礎和環(huán)境條件綜合影響的結(jié)果,能夠反映特定脅迫環(huán)境下苧麻的生長發(fā)育狀況。無人機遙感技術(shù)為大規(guī)模田間作物長勢監(jiān)測提供了有效手段,利用無人機搭載多光譜相機對苧麻理化性狀進行綜合評價具有實際意義。因此,以苧麻種質(zhì)資源為研究對象,采用無人機多光譜遙感獲取苧麻冠層的光譜參數(shù)和紋理參數(shù),運用相關(guān)性分析法(Pearson correlation analysis,PCA)、遞歸特征消除法(Recursive feature elimination,RFE)2種最優(yōu)特征篩選方法和線性回歸(Linear regression,LR)、決策樹(Decision tree, DT)、隨機森林回歸(Random forest,RF)、支持向量機(Support vector machines,SVM)、偏最小二乘回歸分析(Partial least squares regression analysis,PLSR)5種機器學習算法分別構(gòu)建了苧麻葉綠素相對含量(SPAD值)、葉面積指數(shù)(Leaf area index,LAI)和葉片相對含水量(Relative water content,RWC)的估測模型。結(jié)果表明,苧麻理化性狀與冠層光譜偏態(tài)參數(shù)存在顯著相關(guān)性,基于偏態(tài)參數(shù)構(gòu)建的苧麻理化性狀估測模型能包含更多信息輸入。對比PCA方法,RFE能更有效地篩選敏感特征參數(shù),從而提高估測模型精度?;诙鄷r序融合數(shù)據(jù)的苧麻理化性狀估測模型精度較高,LR-SAPD估測模型的R2為0.662,RMSE為2.088;LR-RWC估測模型的R2為0.793,RMSE為2.213%,SVR-LAI模型能較好估測苧麻葉面積指數(shù),R2為0.737,RMSE為0.630。提出的準確高效、性價比高、普適性高的田間苧麻理化性狀動態(tài)監(jiān)測方法,可用于作物理化含量的快速、無損估測。

    Abstract:

    The physiological and biochemical properties of ramie are the result of comprehensive influence of genetic basis and environmental conditions, which can reflect ramie growth under specific stress environment. Therefore, a fast, accurate and inexpensive method is needed to monitor the dynamic changes of ramie physicochemical property during the whole growth cycle. Unmanned aerial vehicle (UAV) remote sensing technology provides an effective means for monitoring crop growth in large field, which has been widely concerned and applied by virtue of its advantages of fast, non-destructive, timely and accurate. However, at present, there are few researches on the comprehensive evaluation of ramie physicochemical property by using UAV multi-spectral images. The UAV was equipped with a multi-spectral camera to acquire the multi-temporal canopy images of ramie. Then, the canopy orthophoto image was obtained by DJI terra, and the spectral and texture characteristic values of ramie plants were further extracted. Pearson correlation analysis (PCA) and recursive feature elimination (RFE) were used to screen the sensitive eigenvalues. Finally, based on multi-temporal remote sensing data, linear regression (LR), random forest regression (RF), support vector machines (SVM), partial least squares regression analysis (PLSR) and decision tree (DT) were used to estimate ramie physicochemical property, respectively. The results showed that there was a significant correlation between the ramie physicochemical property and spectral skewness parameters. Both PCA and RFE can improve the accuracy of the estimation model, but RFE had better performance. The accuracy of the LR-SAPD estimation model was 0.662. The R2 and RMSE of LR-RWC estimation model were 0.793 and 2.213%, respectively. The SVR-LAI model could better estimate ramie LAI (R2=0.737, RMSE was 0.630). In conclusion, an accurate, efficient, cost-effective and universal dynamic monitoring method for physicochemical property of field ramie was proposed.

    參考文獻
    相似文獻
    引證文獻
引用本文

付虹雨,王薇,盧建寧,岳云開,崔國賢,佘瑋.基于無人機多光譜遙感和機器學習的苧麻理化性狀估測[J].農(nóng)業(yè)機械學報,2023,54(5):194-200,347. FU Hongyu, WANG Wei, LU Jianning, YUE Yunkai, CUI Guoxian, SHE Wei. Estimation of Ramie Physicochemical Property Based on UAV Multi-spectral Remote Sensing and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):194-200,347.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼