亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機(jī)多光譜遙感的芳樟矮林SPAD反演
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52269013、32060333)、江西省主要學(xué)科學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)計(jì)劃青年項(xiàng)目(20204BCJL23046)、江西省科技廳重大科技專項(xiàng)(20203ABC28W016-01-04)和江西省林業(yè)局樟樹研究專項(xiàng)(202007-01-04)


Inversion of SPAD of Cinnamomum camphora Dwarf Forest Based on UAV Multispectral Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)利用多光譜技術(shù)開展芳樟葉綠素相對(duì)含量(SPAD)監(jiān)測(cè),及時(shí)快速診斷芳樟矮林生長(zhǎng)狀況,為田間管理決策提供信息支持,以紅壤區(qū)芳樟矮林為研究對(duì)象,利用無人機(jī)多光譜遙感影像,提取波段反射率,篩選植被指數(shù),分別以波段反射率和植被指數(shù)為模型輸入量,采用偏最小二乘回歸、支持向量回歸、反向傳播(Back propagation,BP)神經(jīng)網(wǎng)絡(luò)和徑向基函數(shù)(Radial basis function,RBF)神經(jīng)網(wǎng)絡(luò)4種方法構(gòu)建芳樟矮林SPAD反演模型,并對(duì)比不同輸入量、不同模型模擬結(jié)果的反演精度。研究結(jié)果表明:對(duì)比兩種不同的輸入量,在同一模型反演的精度相差不大;其中,基于偏最小二乘回歸法,以植被指數(shù)為模型自變量估測(cè)芳樟矮林SPAD效果略優(yōu);基于支持向量回歸、BP神經(jīng)網(wǎng)絡(luò)和RBF神經(jīng)網(wǎng)絡(luò),以波段反射率為模型自變量估測(cè)芳樟矮林SPAD效果略優(yōu);對(duì)比4種建模方法,不同方法建模預(yù)測(cè)精度不同,與偏最小二乘回歸、支持向量回歸和BP神經(jīng)網(wǎng)絡(luò)相比,基于RBF神經(jīng)網(wǎng)絡(luò)反演芳樟SPAD的精度最高,以波段反射率和植被指數(shù)為模型輸入量的測(cè)試集為例,其決定系數(shù)R2分別為0.788、0.751,均方根誤差(RMSE)分別為1.838、2.457,表明RBF神經(jīng)網(wǎng)絡(luò)在芳樟矮林SPAD預(yù)測(cè)過程中具有明顯優(yōu)勢(shì)。

    Abstract:

    The use of multispectral technology to carry out chlorophyll relative content (SPAD) monitoring of Cinnamomum camphora dwarf forest could provide timely diagnosis of Cinnamomum camphora dwarf forest growth and provide timely information support for field management decisions. The SPAD inversion model of Cinnamomum camphora dwarf forest was constructed by using UAV multispectral remote sensing images to extract band reflectance and filter vegetation index, which took band reflectance and vegetation index as model input respectively, and four methods were used: partial least squares regression (PLSR), support vector regression (SVR), back propagation (BP) neural network and radial basis function (RBF) neural network, and different input quantities and the inversion accuracy of simulation results of different models were compared. The results showed that there was little difference in the accuracy of inversion in the same model compared with two different inputs. Based on the partial least squares regression method, the estimation of SPAD of Cinnamomum camphora dwarf forest with vegetation index as the model independent variable was slightly better. Based on support vector regression, BP neural network and RBF neural network, the estimation of SPAD of Cinnamomum camphora dwarf forest with band reflectance as the model independent variable was slightly better. Compared with partial least squares regression, support vector regression and BP neural network, the accuracy of Cinnamomum camphora SPAD inversion based on RBF neural network was the highest. Taking the band reflectance and vegetation index as the input of the model as examples, the coefficient of determination (R2) was respectively 0.788 and 0.751, and root mean square error (RMSE) was respectively 1.838 and 2.457, indicating that RBF neural network had obvious advantages in predicting the SPAD of Cinnamomum camphora dwarf forest.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

魯向暉,王倩,張海娜,龔榮新,張杰,楊寶城.基于無人機(jī)多光譜遙感的芳樟矮林SPAD反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):201-209. LU Xianghui, WANG Qian, ZHANG Haina, GONG Rongxin, ZHANG Jie, YANG Baocheng. Inversion of SPAD of Cinnamomum camphora Dwarf Forest Based on UAV Multispectral Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):201-209.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-01-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼