亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力機(jī)制和邊緣感知的田梗提取模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFE0125500-04)、國(guó)家自然科學(xué)基金青年基金項(xiàng)目(32101617)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新項(xiàng)目(CX(22)3201)和中國(guó)博士后科學(xué)基金項(xiàng)目(2022T150327)


Ridge Extraction Model Based on Attention Mechanism and Edge Perception
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    田埂精確提取是數(shù)字化農(nóng)業(yè)管理的重要前提。針對(duì)由于遮擋、斑禿等因素干擾,給基于語(yǔ)義分割方法提取田埂帶來(lái)困難問(wèn)題,提出一種基于注意力機(jī)制和邊緣感知模塊的U-Net網(wǎng)絡(luò)實(shí)現(xiàn)田埂提取。首先,將多信息注意力引入U(xiǎn)型分割網(wǎng)絡(luò)的下采樣中,增強(qiáng)相鄰層之間的上下文信息,提升對(duì)田埂區(qū)域語(yǔ)義特征的表示能力。其次,將邊緣感知分割模塊應(yīng)用至U-Net解碼部分的每一層,在不同語(yǔ)義特征層提取田埂邊緣信息,提高田埂區(qū)域語(yǔ)義分割精度。最后,聯(lián)合邊緣感知損失與語(yǔ)義分割損失構(gòu)建聯(lián)合損失函數(shù),用于整體網(wǎng)絡(luò)優(yōu)化。通過(guò)對(duì)安徽省淮北市濉溪縣小麥基地采集的無(wú)人機(jī)麥田數(shù)據(jù)集進(jìn)行訓(xùn)練和模型驗(yàn)證,實(shí)驗(yàn)結(jié)果表明,本文模型語(yǔ)義分割像素準(zhǔn)確率高達(dá)95.57%,平均交并比達(dá)到77.48%。

    Abstract:

    Accurate extraction of ridges is an important prerequisite for digital agricultural management. However, due to the interference of factors such as occlusion and alopecia areata, it brings challenges for the semantic segmentation method to extract the ridge area. A U-Net segmentation network model was proposed based on a multi-information attention mechanism and an edge-aware module. Firstly, multi-information attention was introduced into the down-sampling of the U-shaped network to enhance the context information between adjacent layers and improve the representation ability of the semantic features of the ridge area. Secondly, the edge-aware segmentation module was applied to each layer of the U-Net decoding part, and the ridge edge information was extracted in different semantic feature layers to improve the semantic segmentation accuracy of the ridge region. Finally, the joint edge-aware loss and semantic segmentation loss were used to construct a joint loss function for overall network optimization. The training and model validation were carried out with the UAV wheat field data set collected by the wheat experimental base in Suixi County, Huaibei City, Anhui Province. The experimental results showed that the pixel accuracy of semantic segmentation of crop plants in different datasets was as high as 95.57%, and the average intersection ratio was 77.48%.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

顧興健,劉子儒,任守綱,鄭恒彪,徐煥良.基于注意力機(jī)制和邊緣感知的田梗提取模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):210-218. GU Xingjian, LIU Ziru, REN Shougang, ZHENG Hengbiao, XU Huanliang. Ridge Extraction Model Based on Attention Mechanism and Edge Perception[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):210-218.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼