亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v4的荔枝病蟲害檢測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

華南農(nóng)業(yè)大學(xué)新農(nóng)村發(fā)展研究院農(nóng)業(yè)科技合作共建項(xiàng)目(2021XNYNYKJHZGJ032)、省級(jí)鄉(xiāng)村振興戰(zhàn)略專項(xiàng)省級(jí)組織實(shí)施項(xiàng)目(粵財(cái)農(nóng)(2021)37號(hào))、廣東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)建設(shè)專項(xiàng)資金項(xiàng)目(2022KJ108)、廣東省鄉(xiāng)村振興戰(zhàn)略專項(xiàng)(農(nóng)業(yè)科技能力提升)(TS-1-4)和財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-32-14)


Detection of Litchi Diseases and Insect Pests Based on Improved YOLO v4 Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)時(shí)準(zhǔn)確地檢測(cè)到自然環(huán)境下背景復(fù)雜的荔枝病蟲害,本研究構(gòu)建荔枝病蟲害圖像數(shù)據(jù)集并提出荔枝病蟲害檢測(cè)模型以提供診斷防治。以YOLO v4為基礎(chǔ),使用更輕、更快的輕量化網(wǎng)絡(luò)GhostNet作為主干網(wǎng)絡(luò)提取特征,并結(jié)合GhostNet中的核心設(shè)計(jì)引入更低成本的卷積Ghost Module代替頸部結(jié)構(gòu)中的傳統(tǒng)卷積,得到輕量化后的YOLO v4-G模型。在此基礎(chǔ)上使用新特征融合方法和注意力機(jī)制CBAM對(duì)YOLO v4-G進(jìn)行改進(jìn),在不失檢測(cè)速度和模型輕量化程度的情況下提高檢測(cè)精度,提出YOLO v4-GCF荔枝病蟲害檢測(cè)模型。構(gòu)建的數(shù)據(jù)集包含荔枝病蟲害圖像3725幅,其中病害種類包括煤煙病、炭疽病和藻斑病3種,蟲害種類包括毛氈病和葉癭蚊2種。試驗(yàn)結(jié)果表明,基于YOLO v4-GCF的荔枝病蟲害檢測(cè)模型,對(duì)于5種病蟲害目標(biāo)在訓(xùn)練集、驗(yàn)證集和測(cè)試集上的平均精度分別為95.31%、90.42%和89.76%,單幅圖像檢測(cè)用時(shí)0.1671s,模型內(nèi)存占用量為39.574MB,相比改進(jìn)前的YOLO v4模型縮小84%,檢測(cè)速度提升38%,在測(cè)試集中檢測(cè)平均精度提升4.13個(gè)百分點(diǎn),同時(shí)平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分別高17.67、12.78、25.94個(gè)百分點(diǎn)。所提出的YOLO v4-GCF荔枝病蟲害檢測(cè)模型能夠有效抑制復(fù)雜背景的干擾,準(zhǔn)確且快速檢測(cè)圖像中荔枝病蟲害目標(biāo),可為自然環(huán)境下復(fù)雜、非結(jié)構(gòu)背景的農(nóng)作物病蟲害實(shí)時(shí)檢測(cè)研究提供參考。

    Abstract:

    In order to accurately detect litchi diseases and insect pests with complex background in natural environment in real time, the data set of litchi diseases and insect pests was constructed and the detection model of litchi diseases and insect pests was proposed for diagnosis and control. Based on YOLO v4, GhostNet, the lighter and faster lightweight network, was used as the backbone network to extract features. According to the core design of GhostNet, Ghost Module, a lower cost convolution, was used to replace the traditional convolution in the neck structure. Based on the lightweight YOLO v4-G model, the feature fusion method and attention mechanism called CBAM were used to improve the YOLO v4-G. The detection accuracy was improved without losing the detection speed and the lightweight degree of the model. Finally, the YOLO v4-GCF detection model of litchi diseases and insect pests was proposed. The dataset contained 3725 images of litchi diseases and insect pests. Litchi diseases included sooty mold, anthracnose and algal spot. Litchi insect pests included leaf mite and Dasineura sp. The experimental results showed that the average accuracy of five kinds of diseases and insect pests targets detected by YOLO v4-GCF detection model in train set, validation set and test set was 95.31%, 90.42% and 89.76%, respectively. The detection time of a single image was 0.1671s, and the size of the model was 39.574MB. Compared with the YOLO v4, the model size was reduced by 84%, the detection speed was increased by 38% and the average accuracy in the test set was improved by 4.13 percentage points. At the same time, the average accuracy was 17.67,12.78 and 25.94 percentage points higher than those of YOLO v4-tiny, EfficientDet-d2 and Faster R-CNN, respectively. The proposed YOLO v4-GCF detection model of litchi diseases and insect pests can effectively inhibit the interference of complex background, and accurately and quickly detect targets of litchi diseases and insect pests in the images, which can provide reference for crop diseases and insect pests detection research with complex and unstructured background in natural environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王衛(wèi)星,劉澤乾,高鵬,廖飛,李強(qiáng),謝家興.基于改進(jìn)YOLO v4的荔枝病蟲害檢測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):227-235. WANG Weixing, LIU Zeqian, GAO Peng, LIAO Fei, LI Qiang, XIE Jiaxing. Detection of Litchi Diseases and Insect Pests Based on Improved YOLO v4 Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):227-235.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼