亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力機制與改進YOLO的溫室番茄快速識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

北京高校重點研究培育項目(2021YJPY201)


Fast Recognition of Greenhouse Tomato Targets Based on Attention Mechanism and Improved YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)復(fù)雜環(huán)境下農(nóng)業(yè)機器人對番茄果實的快速準確識別,提出了一種基于注意力機制與改進YOLO v5s的溫室番茄目標快速檢測方法。根據(jù)YOLO v5s模型小、速度快等特點,在骨干網(wǎng)絡(luò)中加入卷積注意力模塊(CBAM),通過串聯(lián)空間注意力模塊和通道注意力模塊,對綠色番茄目標特征給予更多的關(guān)注,提高識別精度,解決綠色番茄在相似顏色背景中難識別問題;通過將CIoU Loss替換GIoU Loss作為算法的損失函數(shù),在提高邊界框回歸速率的同時提高果實目標定位精度。試驗結(jié)果表明,CB-YOLO網(wǎng)絡(luò)模型對溫室環(huán)境下紅色番茄檢測精度、綠色番茄檢測精度、平均精度均值分別為99.88%、99.18%和99.53%,果實檢測精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。將CB-YOLO模型部署到安卓手機端,通過不同型號手機測試,驗證了模型在移動終端設(shè)備上運行的穩(wěn)定性,可為設(shè)施環(huán)境下基于移動邊緣計算的機器人目標識別及采收作業(yè)提供技術(shù)支持。

    Abstract:

    In order to realize the rapid and accurate recognition of greenhouse tomato fruit by agricultural picking robot in the complicated environment of greenhouse, a fast target detection method for greenhouse tomato fruit based on attention mechanism and improved YOLO v5s was proposed. According to the characteristics of small size and fast speed of YOLO v5s(You only look once v5s) model, the convolutional block attention module (CBAM) was added into the backbone network. By concatenating spatial attention module and channel attention module, the problem of color similarity between green tomato fruit and its background was solved. More attention was paid to the target features of green tomato fruit to improve the recognition accuracy. Replacing GIoU Loss with CIoU Loss as the new loss function of the algorithm contributed to improve the positioning accuracy while improving the bounding box regression rate. The test results showed that the recognition accuracy of the CB-YOLO network model for red tomato fruit detecting precision and green tomato fruit detecting precision and mean average precision in greenhouse environment was 99.88%, 98.18% and 99.53%, respectively. Compared with Faster R-CNN network model, YOLO v4-tiny network model and YOLO v5 network model, the detection accuracy and the mean average precision were improved. The CB-YOLO model was deployed to Android system of mobile phones after being tested by different mobile phones, which verified the stability of the performance detection of the deployment model under actual working condition. It will provide technical support for target detection and harvesting based on robotic mobile edge computing in facility environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

張俊寧,畢澤洋,閆英,王鵬程,侯沖,呂樹盛.基于注意力機制與改進YOLO的溫室番茄快速識別[J].農(nóng)業(yè)機械學(xué)報,2023,54(5):236-243. ZHANG Junning, BI Zeyang, YAN Ying, WANG Pengcheng, HOU Chong, Lü Shusheng. Fast Recognition of Greenhouse Tomato Targets Based on Attention Mechanism and Improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):236-243.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼