亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進YOLO v6-tiny的蛋雞啄羽行為識別與個體分類
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32172779)、財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-40)和河北省科技研發(fā)平臺建設(shè)專項(225676150H)


Feather Pecking Abnormal Behavior Identification and Individual Classification Method of Laying Hens Based on Improved YOLO v6-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前蛋雞啄羽異常行為(包括啄和被啄)識別精度比較低的問題,提出了一種基于改進YOLO v6-tiny模型進行啄羽異常行為識別的方法。該方法通過在YOLO v6-tiny模型中引入DenseBlock結(jié)構(gòu)并融入CSP結(jié)構(gòu)的SPP模塊(SPPCSPC)的方式,增強了YOLO v6-tiny模型的特征提取能力,擴大了模型的感受野,提升了模型的檢測精度。在識別出啄羽異常行為的基礎(chǔ)上,對如何基于異常行為發(fā)生次數(shù),進行蛋雞個體分類進行了研究。提出了基于YOLO v6-tiny模型進行蛋雞個體識別,并將啄羽異常行為識別結(jié)果輸入個體識別網(wǎng)絡(luò),進行蛋雞個體分類的方法。同時,本文還分別對2種不同的養(yǎng)殖密度、一天當中3個不同的時間段,異常行為發(fā)生次數(shù)的變化規(guī)律進行了分析。實驗結(jié)果表明,優(yōu)化后的模型對啄和被啄異常行為的識別平均精度(AP)分別為92.86%和92.93%,分別比YOLO v6-tiny模型高1.61、1.08個百分點,比Faster R-CNN模型高3.28、4.00個百分點,比YOLO v4-tiny模型高6.15、6.63個百分點,比YOLO v5s模型高2.04、4.27個百分點,比YOLO v7-tiny模型高5.39、3.92個百分點。本文方法可以識別出啄和被啄羽異常行為,為蛋雞異常行為的智能檢測提供了技術(shù)支撐。

    Abstract:

    To address the current problem of low accuracy in the recognition of feather pecking anomalies (including pecking and pecked) in laying hens, a method for feather pecking anomaly recognition was proposed based on an improved YOLO v6-tiny model. By introducing the DenseBlock structure into the YOLO v6-tiny model and incorporating the SPP module SPPCSPC into the CSP structure, the feature extraction capability of the YOLO v6-tiny model was enhanced, the sensory field of the model was expanded, and the detection accuracy of the model was improved. Based on the identification of feather pecking anomalies, how to classify individual laying hens was investigated based on the number of anomalies. The method to identify individual laying hens based on the YOLO v6-tiny model was proposed and identification results of feather pecking anomalies were input into the individual identification network to classify individual laying hens. At the same time, the change pattern of the number of anomalies at two different breeding densities and three different times of the day was also analyzed. The experimental results showed that the average precision (AP) of the optimized model were 92.86% and 92.93% for pecking and pecked anomalies, respectively, which were 1.61 percentage points and 1.08 percentage points higher than that of the YOLO v6-tiny model, 3.28 percentage points and 4.00 percentage points higher than that of the Faster R-CNN model, 6.15 percentage points and 6.63 percentage points higher than that of the YOLO v4-tiny model, 2.04 percentage points and 4.27 percentage points higher than that of the YOLO v5s model, and 5.39 percentage points and 3.92 percentage points higher than that of the YOLO v7-tiny model. The method can identify the abnormalities of pecking and pecked feathers, which provided technical support for the intelligent detection of abnormal behavior of laying hens. The results of classifying individual laying hens based on pecking abnormalities provided a basis for preferential breeding of individual laying hens.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊斷利,王永勝,陳輝,孫二東,曾丹.基于改進YOLO v6-tiny的蛋雞啄羽行為識別與個體分類[J].農(nóng)業(yè)機械學報,2023,54(5):268-277. YANG Duanli, WANG Yongsheng, CHEN Hui, SUN Erdong, ZENG Dan. Feather Pecking Abnormal Behavior Identification and Individual Classification Method of Laying Hens Based on Improved YOLO v6-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):268-277.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼