亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于小波變換與卷積神經(jīng)網(wǎng)絡(luò)的羊臉識(shí)別模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100601)


Goat Face Recognition Model Based on Wavelet Transform and Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決養(yǎng)殖場(chǎng)條件下羊只的個(gè)體識(shí)別問題,本文基于小波變換與卷積神經(jīng)網(wǎng)絡(luò),提出一種融合頻域特征與空間域特征的羊臉識(shí)別模型DWT-GoatNet。首先采集總計(jì)30只高相似度西農(nóng)薩能奶山羊日間、夜間兩種不同光照環(huán)境下的面部圖像,基于SSIM指標(biāo)剔除其中相似度過高的樣本,接著進(jìn)行圖像裁剪,并通過模糊、調(diào)整亮度、平移、旋轉(zhuǎn)、加入噪聲、縮放等方法完成數(shù)據(jù)增強(qiáng);然后,設(shè)計(jì)基于二維離散小波變換(2D-DWT)與卷積運(yùn)算的羊臉特征提取模塊,完成特征融合;之后,以前述羊臉特征提取模塊為基礎(chǔ),添加分類模塊,進(jìn)行卷積神經(jīng)網(wǎng)絡(luò)搭建;最后,進(jìn)行超參數(shù)組合尋優(yōu),形成羊臉識(shí)別模型。試驗(yàn)結(jié)果表明,本文所構(gòu)建的羊臉識(shí)別模型在日間、夜間兩種不同光照環(huán)境下測(cè)試集上識(shí)別準(zhǔn)確率分別可達(dá)99.74%和99.89%,高于AlexNet、VGGNet-16、GoogLeNet、ResNet-50、DenseNet-121等經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)模型,說明所構(gòu)建模型適用于羊只的個(gè)體識(shí)別,為精準(zhǔn)養(yǎng)殖、農(nóng)險(xiǎn)理賠領(lǐng)域相關(guān)工作提供了有效解決方案。

    Abstract:

    To recognize an individual goat under farm conditions, a novel goat face recognition model named DWT-GoatNet was proposed based on wavelet transform and convolutional neural networks, which integrated frequency domain features and spatial domain features. Firstly, facial images of a total of 30 highly similar Xinong Saanen dairy goats were collected under two different light conditions, daytime and night. Some images were discarded based on structural similarity (SSIM), and the remaining images were cropped manually. Image sets were also augmented by operations of blur, brightness adjustment, translation, rotation, noise addition and scaling. Secondly, a goat face feature extraction module was designed based on twodimensional discrete wavelet transform (2D-DWT) and convolution operation to achieve feature fusion. Then, with this module, a classification module was added and a convolutional neural network named DWT-GoatNet was built. Finally, the combination of hyper-parameters was optimized and goat face recognition model was formed. The experimental results showed that the accuracy of the proposed goat face recognition model can reach 99.74% and 99.89%, respectively, on test set under different light conditions of daytime and night, which was higher than that of some classical CNNs such as AlexNet, VGGNet-16, GoogLeNet, ResNet-50 and DenseNet-121, while the DWT-GoatNet can provide an effective recognition for some related fields of precision farming and agricultural insurances.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃鋁文,謙博,關(guān)非凡,侯紫霞,張其.基于小波變換與卷積神經(jīng)網(wǎng)絡(luò)的羊臉識(shí)別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):278-287. HUANG Lüwen, QIAN Bo, GUAN Feifan, HOU Zixia, ZHANG Qi. Goat Face Recognition Model Based on Wavelet Transform and Convolutional Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):278-287.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼