亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于群智能優(yōu)化算法的土壤水動(dòng)力參數(shù)反演
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(51979220、52179042)、兵團(tuán)重大科技項(xiàng)目(2021AA003-2)和陜西省創(chuàng)新能力支撐計(jì)劃項(xiàng)目(2020PT-023)


Inversion of Soil Hydrodynamic Parameters with Richards Equation Based on Intelligent Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    土壤水動(dòng)力參數(shù)是模擬田間土壤物質(zhì)傳輸過程的基本參數(shù),準(zhǔn)確確定土壤水動(dòng)力參數(shù)對(duì)實(shí)現(xiàn)農(nóng)田生境精準(zhǔn)調(diào)控具有重要意義?;谝痪S垂直入滲試驗(yàn)數(shù)據(jù),采用代數(shù)方法和數(shù)值方法,構(gòu)造3個(gè)不同的目標(biāo)函數(shù),并分析鯨魚優(yōu)化算法和灰狼優(yōu)化算法反演Brooks-Corey-Mualem模型參數(shù)的適用性。結(jié)果表明:通過選擇合適的目標(biāo)函數(shù),兩種群智能優(yōu)化算法均可用于反演土壤水動(dòng)力參數(shù)。在代數(shù)方法中,鯨魚優(yōu)化算法在目標(biāo)函數(shù)2下(由累積入滲量、入滲時(shí)間、含水率構(gòu)成的相對(duì)誤差)固定參數(shù)θr、θs優(yōu)化得到的土壤水動(dòng)力參數(shù)誤差最小,反演參數(shù)得到的累積入滲量、入滲率、含水率的相對(duì)誤差都在9.74%以下,決定系數(shù)都在0.9040以上,反演時(shí)間為70s;在數(shù)值方法中,灰狼優(yōu)化算法在目標(biāo)函數(shù)3下(由累積入滲量、濕潤(rùn)鋒深度、含水率構(gòu)成的相對(duì)誤差)固定參數(shù)θr、θs優(yōu)化得到的參數(shù)誤差最小,反演參數(shù)得到的累積入滲量、入滲率、含水率的相對(duì)誤差都在2.53%以下,決定系數(shù)都在0.9917以上,反演時(shí)間為115s。因此,代數(shù)方法所用時(shí)間短、精度相對(duì)較低,數(shù)值方法所用時(shí)間較長(zhǎng)、精度相對(duì)較高,在反演土壤水動(dòng)力參數(shù)時(shí),可根據(jù)誤差精度需求,選擇合適的優(yōu)化方法。

    Abstract:

    Soil hydrodynamic parameters are the basic parameters for simulating the process of soil material transport in the field. Accurate determination of soil hydrodynamic parameters is of great significance to achieve precise regulation of farmland habitat. For one-dimensional vertical infiltration experimental data,based on algebraic and numerical methods, three different objective functions were constructed, and the applicability of the whale optimization algorithm and grey wolf optimizer was analyzed to invert the parameters of the Brooks-Corey-Mualem model. The result showed that by choosing an appropriate objective function, both swarm intelligence optimization algorithms can be used to invert soil hydrodynamic parameters. In the algebraic method, the whale optimization algorithm optimized the soil hydrodynamic parameters with the fixed parameters θr and θs under the objective function two (relative error composed of cumulative infiltration, time, and soil water content profiles) with the smallest error. The relative errors of the cumulative infiltration volume, infiltration rate, and soil water content profiles obtained from the inversion parameters were all below 9.74%, the determination coefficients were all above 0.9040, and the inversion time was 70s. In the numerical method, the parameter error derived from the fixed parameters θr and θs under the objective function three (relative error composed of cumulative infiltration, depth of wetting front, and soil water content profile) of the grey wolf optimizer was the smallest. The relative errors of the cumulative infiltration volume, infiltration rate, and soil water content profiles obtained from the inversion parameters were all below 2.53%, the determination coefficients were all above 0.9917, and the inversion time was 115s. Therefore, the algebraic method took a short time and has relatively low accuracy, while the numerical method took a long time and has a relatively high accuracy. When inverting soil hydrodynamic parameters, an appropriate optimization method can be selected according to the error accuracy requirements.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘇李君,郭媛,陶汪海,張亞玲,單魚洋,王全九.基于群智能優(yōu)化算法的土壤水動(dòng)力參數(shù)反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(5):324-334. SU Lijun, GUO Yuan, TAO Wanghai, ZHANG Yaling, SHAN Yuyang, WANG Quanjiu. Inversion of Soil Hydrodynamic Parameters with Richards Equation Based on Intelligent Optimization Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(5):324-334.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-10
  • 出版日期:
文章二維碼