亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于自監(jiān)督對比學(xué)習(xí)的寒旱區(qū)遙感圖像河流識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61861025、62241106)、2021年隴原青年創(chuàng)新創(chuàng)業(yè)人才(團(tuán)隊)項目、甘肅省高等學(xué)校青年博士基金項目(2021QB-49)、〖JP〗甘肅省高校大學(xué)生就業(yè)創(chuàng)業(yè)能力提升工程項目(2021-35)、智能化隧道監(jiān)理機器人研究項目(中鐵科研院(科研)字2020-KJ016-Z016-A2)和四電BIM工程與智能應(yīng)用鐵路行業(yè)重點實驗室開放項目(BIMKF-2021-04)


River Extraction Method from Remote Sensing Images of Cold and Arid Regions Based on Self-supervised Comparative Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對遙感圖像河流數(shù)據(jù)樣本人工標(biāo)注成本高且難以大量獲取,以及網(wǎng)絡(luò)在河流圖像邊緣細(xì)節(jié)提取的效果不佳問題,提出一種通過自監(jiān)督對比學(xué)習(xí)方式利用大量無標(biāo)簽遙感河流圖像數(shù)據(jù)進(jìn)行編碼器預(yù)訓(xùn)練,并使用少量標(biāo)簽數(shù)據(jù)對預(yù)訓(xùn)練后的編碼器進(jìn)行微調(diào),同時在編解碼結(jié)構(gòu)中使用一種新的非均勻采樣方式的語義分割網(wǎng)絡(luò)。自監(jiān)督對比學(xué)習(xí)可以利用大量無標(biāo)簽數(shù)據(jù)進(jìn)行前置任務(wù)模型訓(xùn)練,僅需少量標(biāo)簽數(shù)據(jù)對下游河流提取任務(wù)模型微調(diào)即可;非均勻采樣方式能夠通過對高頻區(qū)域密集采樣、對低頻區(qū)域稀疏采樣的方式獲得圖像中不同類別之間清晰的邊界信息和同類別區(qū)域中的細(xì)節(jié)信息,減少模型的冗余度。在河流數(shù)據(jù)集上的實驗表明,利用360幅有標(biāo)簽數(shù)據(jù)對預(yù)訓(xùn)練后的網(wǎng)絡(luò)進(jìn)行微調(diào),其像素準(zhǔn)確率、交并比、召回率分別達(dá)到90.4%、68.6%和83.2%,與使用1200幅有標(biāo)簽數(shù)據(jù)訓(xùn)練的有監(jiān)督AFR-LinkNet網(wǎng)絡(luò)性能相當(dāng);在使用全部數(shù)據(jù)標(biāo)簽進(jìn)行微調(diào)后,網(wǎng)絡(luò)的像素準(zhǔn)確率、交并比、召回率分別達(dá)到93.7%、73.2%和88.5%,相比AFR-LinkNet、DeepLabv3+、LinkNet、ResNet50和UNet網(wǎng)絡(luò),像素準(zhǔn)確率分別提高3.1、7.6、12.3、14.9、19.8個百分點,交并比分別提高3.5、8.7、10.5、16.9、24.0個百分點,召回率分別提高2.1、4.8、6.7、9.4、12.9個百分點,驗證了模型在河流圖像上精準(zhǔn)提取河流的有效性。該算法模型對于解決缺少大量有標(biāo)簽數(shù)據(jù)和分析我國寒旱區(qū)河流分布、水災(zāi)害預(yù)警、水資源合理利用以及農(nóng)業(yè)灌溉發(fā)展等具有重要意義。

    Abstract:

    Aiming at the problems of high cost of manual labeling of river data samples in remote sensing images and difficulty in obtaining a large number of them, as well as poor effect of network extraction of river image edge details, a self-supervised comparative learning method was proposed to use a large number of unlabeled remote sensing river image data for encoder pre-training, and a small amount of label data was used to fine-tune the encoder after pre-training. Meanwhile, a semantic segmentation network based on non-uniform sampling was used in the codec structure. Self-supervised comparative learning can use a large number of unlabeled data for pre-task model training, and only a small amount of label data was needed to fine-tune the downstream river extraction task model. The non-uniform sampling method can obtain clear boundary information between different categories in the image and details in the same category by intensive sampling in the high frequency region and sparse sampling in the low frequency region, thus reducing the redundancy of the model. Experiments on river data sets showed that the pixel accuracy, intersection over union and recall rate of the pre-trained network can reach 90.4%, 68.6% and 83.2%, respectively, when 360 labeled datas was used to fine-tune the network, which was comparable to the performance of the supervised AFR-LinkNet network trained with 1200 labeled datas. After fine-tuning with all data labels, the pixel accuracy, intersection ratio and recall rate of the network reached 93.7%, 73.2% and 88.5%, respectively. Compared with AFR-LinkNet, DeepLabv3+, LinkNet, ResNet50 and UNet networks, the pixel accuracy was increased by 3.1, 7.6, 12.3, 14.9, 19.8 percentage points, the intersection over union was increased by 3.5, 8.7, 10.5, 16.9, 24.0 percentage points, and the recall rate was increased by 2.1, 4.8, 6.7, 9.4, 12.9 percentage points, respectively. The effectiveness of the model to accurately extract rivers from river images was verified. This algorithm model was of great significance for solving the lack of a large number of labeled data and analyzing the distribution of rivers in cold and arid regions, water disaster warning, rational utilization of water resources and agricultural irrigation development.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

沈瑜,王海龍,梁棟,牛東興,嚴(yán)源,李陽陽.基于自監(jiān)督對比學(xué)習(xí)的寒旱區(qū)遙感圖像河流識別方法[J].農(nóng)業(yè)機械學(xué)報,2023,54(6):125-135. SHEN Yu, WANG Hailong, LIANG Dong, NIU Dongxing, YAN Yuan, LI Yangyang. River Extraction Method from Remote Sensing Images of Cold and Arid Regions Based on Self-supervised Comparative Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):125-135.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-20
  • 出版日期: