亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于作物生長模型與機器學習算法的區(qū)域冬小麥估產
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(41721333)、河南省哲學社會科學規(guī)劃項目(2022BJJ026、2021BJJ062)和河南城建學院大學生創(chuàng)新創(chuàng)業(yè)訓練計劃專項(202211765012、202211765018)


Regional Winter-wheat Yield Estimation Based on Coupling of Machine Learning Algorithm and Crop Growth Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為精準、高效、實時地實現區(qū)域冬小麥產量估算,以河南省鶴壁市淇縣橋盟鄉(xiāng)石橋村為研究區(qū),基于分辨率10m的Sentinel-2多時相光學遙感影像,利用集合卡爾曼濾波(Ensemble Kalman filter,EnKF)算法同化PROSAIL輻射傳輸模型反演的多期葉面積指數(Leaf area index,LAI)到PyWOFOST作物生長模型中實現一定數量不同長勢單點產量的估測,最后利用建立的機器學習模型和面域數據反演區(qū)域冬小麥產量,實現作物生長模型與機器學習算法的應用耦合及一種新的區(qū)域冬小麥估產模式。研究基于Sobol參數敏感性分析法量化對貯藏器官總干重質量(Total dry weight of storage organs,TWSO)與LAImax的敏感性參數,并基于反演的多期LAI和粒子群優(yōu)化(Particle swarm optimization,PSO)算法優(yōu)化與LAImax相關的TDWI、TBASE、CVS、CVL敏感性參數,將其輸入到PyWOFOST模型中,利用EnKF算法和時序LAI數據調整對TWSO相關的AMAXTB1、TDWI、TSUMEM、CVO敏感性參數,實現單點產量的估算;與實測單點產量相比,該方法估算的R2、RMSE、MAE、Bias分別為0.8665、468.64kg/hm2、385.70kg/hm2和103.08,為建立隨機森林回歸(Random forest regression,RFR)區(qū)域估產算法提供準確的單點產量訓練數據。針對研究區(qū)(309.32hm2),基于不同長勢人工樣點產量數據建立的RFR區(qū)域估產算法,區(qū)域估產精度為99.44%,每公頃算法運行用時1.55s;應用EnKF算法同化多時期面域LAI到PyWOFOST作物生長模型中的區(qū)域估產精度為89.01%,每公頃算法運行用時約0.47h;耦合PyWOFOST作物生長模型與RFR機器學習算法的區(qū)域估產精度達到95.58%,每公頃算法運行用時8.85s(訓練數據的單點產量計算占總時長約81.35%),顯著降低機器學習算法所需的人工成本和同化變量過程計算的時間及算力成本。研究結果為準確、快速的大區(qū)域作物估產提供理論支持和技術參考。

    Abstract:

    To realize the regional winter wheat yield estimation accurately, efficiently and in real-time, Shiqiao Village, Qi County, Hebi City, Henan Province, was taken as the study area. The ensemble Kalman filter (EnKF) was used to assimilate the time-series leaf area index (LAI),which were estimated by the PROSAIL radiation transfer model, into PyWOFOST crop growth model to estimate a certain number of winter wheat site yield points with different growth. And those site yield points provided training data for random forest regression (RFR) algorithm to establish machine learning model. Finally, the established machine learning model and the time-series optical remote sensing images of Sentinel-2 with 10m resolution were used to estimate the regional winter wheat yield, so as to realize the application of coupling crop growth model and machine learning algorithm, and establish a new regional winter wheat yield estimation mode. Based on Sobol parameter sensitivity analysis algorithm, the sensitivity parameters of TWSO and LAImax were quantified. The TDWI, TBASE, CVS and CVL sensitivity parameters related to LAImax were optimized by time-series LAI data and particle swarm optimization (PSO) algorithm. And inputting them into the PyWOFOST model, using the EnKF algorithm and time-series LAI data to adjust the AMAXTB1, TDWI, TSUMEM, and CVO sensitivity parameters of TWSO to improve the accuracy of the singlepoint yield estimation. Compared with the site yield points, the R2, RMSE, MAE, and Bias of estimation were 0.8665, 468.64kg/hm2, 385.70kg/hm2 and 103.08, respectively, providing accurate site points yield of training data for establishing the RFR region yield estimation algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬戰(zhàn)林,文楓,周穎杰,魯春陽,薛華柱,李長春.基于作物生長模型與機器學習算法的區(qū)域冬小麥估產[J].農業(yè)機械學報,2023,54(6):136-147. MA Zhanlin, WEN Feng, ZHOU Yingjie, LU Chunyang, XUE Huazhu, LI Changchun. Regional Winter-wheat Yield Estimation Based on Coupling of Machine Learning Algorithm and Crop Growth Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):136-147.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-21
  • 出版日期: