亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于視頻跟蹤算法的果園獼猴桃產(chǎn)量實時預(yù)估
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中央高?;究蒲袠I(yè)務(wù)費專項資金項目(2662020LXQD002)


Real-time Production Prediction of Kiwifruit in Orchard Based on Video Tracking Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    對獼猴桃產(chǎn)量的準(zhǔn)確預(yù)估有利于合理安排后續(xù)采摘與運輸工序,因此開發(fā)智能化的產(chǎn)量實時預(yù)估工具非常重要。針對大棚培育的獼猴桃矮化密植、分布范圍廣等特點,本研究利用果園履帶小車采集視頻,結(jié)合人工標(biāo)注,建立獼猴桃檢測和跟蹤的數(shù)據(jù)集??紤]到自制數(shù)據(jù)集中獼猴桃占比小及密集分布的特點,本文提出使用YOLO v7模型加上Soft-NMS來檢測每一幀圖像內(nèi)的獼猴桃。在卡爾曼濾波器預(yù)測的結(jié)果上,引入VGG16網(wǎng)絡(luò)對獼猴桃進行特征提取,并結(jié)合匈牙利算法完成幀間目標(biāo)的匹配。最后采用基于YOLO v7+DeepSort跟蹤算法的ID計數(shù)方法對獼猴桃進行產(chǎn)量估計。實驗結(jié)果表明,改進的YOLO v7模型在獼猴桃檢測數(shù)據(jù)集上表現(xiàn)良好,檢測的F1值為90.09%。獼猴桃跟蹤數(shù)據(jù)集中使用的跟蹤算法平均準(zhǔn)確率為89.87%,每個目標(biāo)正確匹配的精確率為82.34%,大型視頻跟蹤速度為20.19f/s。在環(huán)境影響較小的條件下,ID計數(shù)準(zhǔn)確率為97.49%。該方法可為獼猴桃果園智能化管理中的估產(chǎn)、采收規(guī)劃等提供技術(shù)支撐。

    Abstract:

    The use of machine vision to quickly and accurately estimate fruit yield is of great significance for the development of smart agriculture. In view of the characteristics of dwarf dense planting and wide distribution of kiwifruit cultivated in greenhouses, orchard crawler trolleys were used to shoot and obtain videos of kiwifruit orchards, and a dataset of kiwifruit detection and tracking was established combined with artificial labeling. Considering the small proportion and dense distribution of kiwifruit in the self-made dataset, the YOLO v7 model and Soft-NMS were proposed to detect kiwifruit in each frame. Based on the prediction results of the Kalman filter, the VGG16 network was introduced to extract the features of kiwifruit, and the Hungarian algorithm was used to complete the target matching of the before and after frames. Finally, the ID counting method based on YOLO v7+DeepSort tracking algorithm was used to realize kiwifruit yield estimation. The experimental results showed that the improved YOLO v7 model performed well on the kiwifruit detection dataset, with an F1 score of 90.09%. The average accuracy of the adopted tracking algorithm on the kiwifruit tracking dataset was 89.87%, the precision of each target can be correctly matched was 82.34% and a large video tracking speed of 20.19f/s. Under the condition of low environmental impact, the ID counting accuracy was 97.49%. This method can provide technical support for yield estimation and harvest planning in the intelligent management of kiwifruit orchards.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭明月,劉雅晨,李偉夫,陳洪,李善軍,陳耀暉.基于視頻跟蹤算法的果園獼猴桃產(chǎn)量實時預(yù)估[J].農(nóng)業(yè)機械學(xué)報,2023,54(6):178-185. GUO Mingyue, LIU Yachen, LI Weifu, CHEN Hong, LI Shanjun, CHEN Yaohui. Real-time Production Prediction of Kiwifruit in Orchard Based on Video Tracking Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):178-185.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-05
  • 出版日期: