亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

復(fù)雜背景下果園視覺導(dǎo)航路徑提取算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31801782)和河北省自然科學(xué)基金項(xiàng)目(C2020204055)


Visual Navigation Path Extraction Algorithm in Orchard under Complex Background
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決果園視覺導(dǎo)航機(jī)器人行間自主行進(jìn)和調(diào)頭問題,提出了基于Mask R-CNN的導(dǎo)航線提取方法和基于隨機(jī)采樣一致性(Random sample consensus, RANSAC)算法的樹行線提取方法。首先,基于Mask R-CNN模型對(duì)道路與樹干進(jìn)行識(shí)別,提取道路分割掩碼和樹干邊界框坐標(biāo);其次,在生成行間導(dǎo)航線的基礎(chǔ)上,采用改進(jìn)RANSAC算法提取前排樹行線;然后,計(jì)算樹干邊界框坐標(biāo)點(diǎn)到前排行線的距離,篩選后排樹干坐標(biāo)點(diǎn),采用最小二乘法擬合生成后排樹行線;最后,通過分析前后排樹行信息判斷調(diào)頭方向,結(jié)合本文提出的行末端距離計(jì)算與調(diào)頭路徑規(guī)劃方法,規(guī)劃車輛的調(diào)頭路線。實(shí)驗(yàn)結(jié)果表明:在不同光照、雜草、天氣環(huán)境下的6種果園場景中,模型的平均分割精度和邊界框檢測精度都為97.0%,導(dǎo)航目標(biāo)點(diǎn)提取的平均偏差不超過5.3%,樹行線檢測準(zhǔn)確率不低于87%,調(diào)頭后車輛距道路中心的平均偏差為7.8cm,可為果園環(huán)境下的視覺自主導(dǎo)航提供有效參考。

    Abstract:

    To solve the problem of autonomous travel and U-turn between rows for orchard visual navigation robots, a navigation line extraction method based on Mask R-CNN and a tree line extraction method based on random sample consensus (RANSAC) algorithm were proposed. Firstly, road and tree trunks were identified based on the Mask R-CNN model, and road segmentation mask and trunk bounding box coordinates were extracted. Secondly, after generating inter-row navigation lines, the improved RANSAC algorithm was used to extract the front row line of trees. Then, the distance from the coordinate point of the trunk bounding box to the front row line was calculated, and the coordinate points of the back row trunk was filtered to generate the back row line by least squares fitting. Finally, the U-turn direction can be determined by analyzing the front and back row tree lines information combined with the end of row distance and the proposed U-turn path planning method. The experimental results showed that the average segmentation accuracy and bounding box detection accuracy of the model were both 97.0% in the six orchards under different lighting, weed and weather environments. The average deviation of navigation target point extraction was within 5.3%, and the accuracy rate of tree line detection was higher than 87%. The average deviation of the vehicle position from the center of the road after the U-turn was 7.8cm. It can be proved that the proposed method can navigate effectively for visual autonomous navigation in the orchard environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖珂,夏偉光,梁聰哲.復(fù)雜背景下果園視覺導(dǎo)航路徑提取算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(6):197-204,252. XIAO Ke, XIA Weiguang, LIANG Congzhe. Visual Navigation Path Extraction Algorithm in Orchard under Complex Background[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):197-204,252.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-01-06
  • 出版日期: