亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于EnKF和PF的沙壕渠灌域土壤含鹽量監(jiān)測(cè)模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403302)和國家自然科學(xué)基金項(xiàng)目(51979232、51979234)


Soil Salinity Monitoring Model of Shahaoqu Irrigation Area Based on EnKF and PF Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為探究不同數(shù)據(jù)同化算法在時(shí)空尺度上監(jiān)測(cè)土壤含鹽量的可行性,以內(nèi)蒙古河套灌區(qū)沙壕渠灌域?yàn)檠芯繀^(qū)域,采用高分一號(hào)衛(wèi)星遙感圖像作為數(shù)據(jù)源,通過EnKF算法和PF算法的同化觀測(cè)算子和模型算子得到時(shí)空范圍中的土壤含鹽量變化情況。其中觀測(cè)算子分為兩步,首先通過PLS-VIP準(zhǔn)則來篩選光譜指數(shù)作為自變量,再使用ELM模型建立基于不同時(shí)間不同深度的遙感監(jiān)測(cè)土壤含鹽量模型;模型算子為基于Hydrus-1D模型的數(shù)學(xué)模擬監(jiān)測(cè)土壤含鹽量模型。結(jié)果表明,基于ELM模型的土壤含鹽量模型中,深度0~20cm、20~40cm和40~60cm的平均IOA均在0.74以上,平均ME在0.14%以下,表明反演模型具有良好的精度;基于Hydrus-1D的數(shù)學(xué)模擬監(jiān)測(cè)土壤含鹽量模型中,3個(gè)深度平均IOA在0.79~0.89之間,平均ME在0.128%~0.137%之間,能夠較好地反映土壤鹽分在時(shí)間序列中的運(yùn)移情況;EnKF算法3個(gè)深度IOA在0.820以上,ME在0.141%~0.157%之間,NMB在0.141~0.252之間,PF算法3個(gè)深度IOA在0.89以上,ME在0.090%~0.142%之間,NMB在0.075~0.097之間,精度優(yōu)于EnKF算法,能夠很好地反映土壤含鹽量在時(shí)間和空間上的分布情況。本文基于EnKF和PF算法進(jìn)行Hydrus-1D模型和ELM模型的同化方案研究,提高了土壤含鹽量的監(jiān)測(cè)精度,可為后續(xù)在長(zhǎng)時(shí)間大范圍的時(shí)空尺度上監(jiān)測(cè)土壤含鹽量提供依據(jù),也可為精準(zhǔn)農(nóng)業(yè)防治土壤鹽漬化的研究提供參考。

    Abstract:

    In order to explore the feasibility of different data assimilation algorithms in monitoring soil salinity on the spatio-temporal scale, the Shahaoqu Canal Irrigation Area in Hetao Irrigation District of Inner Mongolia was taken as the research area, and the Gaofen-1 satellite remote sensing image was used as the data source. The assimilation observation operator and model operator of EnKF algorithm and PF algorithm were used to obtain the changes of soil salinity in the spatio-temporal range. The observation operator was divided into two steps, firstly, the PLS-VIP criterion was used to filter the spectral index as the independent variable, and then the ELM model was used to establish the remote sensing monitoring soil salinity model based on different depths at different times; the model operator was a mathematical simulation monitoring soil salinity model based on the Hydrus-1D model. The results showed that in the ELM-based soil salinity model, the average IOA at the depths of 0~20cm, 20~40cm and 40~60cm were above 0.74, and the average ME was below 0.14%, indicating that the inversion model had good accuracy; in the Hydrus-1D based mathematical simulation monitoring soil salinity model, the average IOA at the three depths was between 0.79 and 0.89 and the average ME was between 0.128% and 0.137%, which could better reflect the transport of soil salts in the time series; the EnKF algorithm had IOA above 0.820 for three depths, ME between 0.141% and 0.157% and NMB between 0.141 and 0.252, and the PF algorithm had IOA above 0.89 for three depths and ME ranged from 0.090% to 0.142% and NMB ranged from 0.075 to 0.097, with better accuracy than the EnKF algorithm, which can well reflect the distribution of soil salinity in time and space. The assimilation scheme of Hydrus-1D model and ELM model based on EnKF and PF algorithms improved the accuracy of monitoring soil salinity, which can provide a basis for subsequent monitoring of soil salinity on a long time and large spatial and temporal scale, and can also provide a reference for the research of precision agriculture to control soil salinity.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張智韜,陳策,賈江棟,殷皓原,姚一飛,黃小魚.基于EnKF和PF的沙壕渠灌域土壤含鹽量監(jiān)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(6):361-372. ZHANG Zhitao, CHEN Ce, JIA Jiangdong, YIN Haoyuan, YAO Yifei, HUANG Xiaoyu. Soil Salinity Monitoring Model of Shahaoqu Irrigation Area Based on EnKF and PF Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):361-372.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-12-05
  • 出版日期: