亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于特征融合的果園非結(jié)構(gòu)化道路識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

山東省引進(jìn)頂尖人才“一事一議”專項(xiàng)經(jīng)費(fèi)項(xiàng)目(魯政辦字[2018]27號)、山東省重點(diǎn)研發(fā)計(jì)劃(重大科技創(chuàng)新工程)項(xiàng)目(2020CXGC010804)、山東省自然科學(xué)基金項(xiàng)目(ZR2021MC026)和淄博市重點(diǎn)研發(fā)計(jì)劃(校城融合類)生態(tài)無人農(nóng)場研究院項(xiàng)目(2019ZBXC200)


Recognition Method of Orchard Unstructured Road Based on Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對果園道路無明顯邊界且道路邊緣存在陰影、土壤和沙石干擾等問題,提出一種基于特征融合的果園非結(jié)構(gòu)化道路識別方法。通過相機(jī)標(biāo)定獲取畸變參數(shù)對采集到的圖像進(jìn)行畸變矯正,并提出一種基于濾波與梯度統(tǒng)計(jì)相結(jié)合的動(dòng)態(tài)感興趣區(qū)域(ROI)提取方法對HSV顏色空間S分量進(jìn)行ROI選取,采用最大值法將顏色特征與S分量多方向紋理特征掩膜相融合并進(jìn)行二值化與降噪處理。根據(jù)道路邊緣突變特征尋找特征點(diǎn),并提出一種基于距離與位置雙重約束的兩級偽特征點(diǎn)剔除方法。為更好貼合非結(jié)構(gòu)化道路不規(guī)則邊緣,引入分段三次樣條插值法擬合道路邊緣,以此實(shí)現(xiàn)道路識別。試驗(yàn)結(jié)果表明,在晴天、陰天、順光、逆光、冬季晴天和雨雪天氣6種工況條件下,S分量、紋理圖像和融合圖像的平均縱向偏差均值分別為2.43、39.71、1.36像素,平均偏差率均值分別為0.99%、18.02%和0.54%,相較于S分量與紋理圖像而言,使用本文方法構(gòu)建的融合圖像其平均縱向偏差與平均偏差率均得到有效減少。最小二乘法、隨機(jī)采樣一致性法(RANSAC)與分段三次樣條插值法擬合邊緣的平均偏差均值分別為2.64、3.16、0.66像素,平均偏差率均值分別為1.02%、1.21%和0.26%,偏差率平均標(biāo)準(zhǔn)差分別為0.23%、0.31%與0.09%,其中分段三次樣條插值法的平均偏差均值、平均偏差率均值與偏差率平均標(biāo)準(zhǔn)差均最小,表明本文擬合方法其擬合精度更高且具有更好的穩(wěn)定性。6種工況條件下,本文算法單幀圖像平均處理時(shí)間為89.9ms,滿足農(nóng)業(yè)機(jī)器人作業(yè)過程中的實(shí)時(shí)性要求。本文方法可為農(nóng)業(yè)機(jī)器人進(jìn)行果園復(fù)雜環(huán)境非結(jié)構(gòu)化道路識別提供參考。

    Abstract:

    Aiming at the problems that orchard roads have no obvious boundaries and there are shadows, soil and sand interference at the edges of the road, a recognition method of orchard unstructured roads based on feature fusion was proposed. The distortion parameters were obtained through camera calibration to correct the distortion of the acquired image, and a dynamic region of interest (ROI) extraction method based on the combination of filtering and gradient statistics was proposed to select the ROI of the S component of the HSV color space. The maximum value method was used to merge the color features with the S component mask for multidirectional texture features for binarization and noise reduction. The feature points were found according to the abrupt features of road edges, and a two-level pseudo feature points elimination method based on the dual constraints of distance and position was proposed. To better fit the irregular edges of unstructured road, the method of segmentation cubic spline interpolation was introduced to fit the road edges to realize road recognition. The experimental results showed that under the six working conditions of sunny day, cloudy day, straight light, backlight, sunny day in winter and rain and snow weather, the mean value of average longitudinal deviations of S component, texture image and fusion image were 2.43 pixels, 39.71 pixels and 1.36 pixels, respectively, and the mean value of average deviation rates were 0.99%, 18.02% and 0.54%, respectively. Compared with the S component and texture image, the average longitudinal deviation and average deviation rate of the fusion image constructed by this method were effectively reduced. The mean value of average deviations of least squares method, random sample consensus method (RANSAC) and segmentation cubic spline interpolation method for fitting edges were 2.64 pixels, 3.16 pixels and 0.66 pixels, respectively, the mean value of average deviation rates were 1.02%, 1.21% and 0.26%, respectively, and the average standard deviations of deviation rate were 0.23%, 0.31% and 0.09%, respectively. The mean value of average deviation, mean value of average deviation rate and average standard deviation of deviation rate of the algorithm were the minimum, which indicated that the fitting method had higher fitting accuracy and better stability. Under the six working conditions, the average processing time of a single image of this algorithm was 89.9 ms, which met the real-time requirements of agricultural robots in the process of operation. The method can provide a reference for agricultural robots to recognize unstructured roads in complex orchard environments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張彥斐,封子晗,張嘉恒,宮金良,蘭玉彬.基于特征融合的果園非結(jié)構(gòu)化道路識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):35-44,67. ZHANG Yanfei, FENG Zihan, ZHANG Jiaheng, GONG Jinliang, LAN Yubin. Recognition Method of Orchard Unstructured Road Based on Feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):35-44,67.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼