Abstract:When corn is sown at high speed (12~16km/h), the initial speed of the seeds leaving the dish is high, and the seeds collide with the seed cavity wall of the belt-type seed guide device, resulting in collision and dislocation, which leads to the low precision of the seeds entering the seed cavity. The belt-type high-speed corn seed guide device with seed receiving mechanism was taken as the research object, and the dynamic model of clamping, transportation, and discharge of the seeds was established. The main factors that affect the seed receiving stability and the precision of the seeds entering the seed cavity were identified, and the improvement method of adding herringbone lines on the surface of the finger was put forward. Single-factor comparison tests and multi-factor optimization tests were carried out by using high-speed camera and image target tracking technology. The single factor test showed that the seed acceptance index and variation coefficient of seed cavity spacing of the finger wheel with improved herringbone lines were obviously better than those of the finger wheel without herringbone lines when the sowing speed was fast. In order to obtain the best performance parameters of the improved seeding mechanism, taking the wheel center distance, the rotation speed of the finger wheel, and the finger length as test factors and the qualified index of seed acceptance and the variation of seed cavity spacing as evaluation indexes, a quadratic orthogonal rotation combination test with three factors and five levels was carried out. By using the multi-objective optimization method, it was determined that when the wheel center distance was 36.8mm, the rotating speed of the finger wheel was 584.97r/min, and the finger length was 10.8mm, the qualified index of seed acceptance was 98.23%, and the coefficient of variation of seed cavity spacing was 0.24%. The optimization results were verified, and the verification results were basically consistent with the optimization results. Under the same conditions, the bench comparison test showed that the sowing performance with a high-speed seed guide device was better than that without high-speed seed guide device.