亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于RGB-D相機(jī)的黃瓜苗3D表型高通量測(cè)量系統(tǒng)研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1001900)、HZAU-AGIS交叉基金項(xiàng)目(SZYJY2022006)、湖北省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021BBA239)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(2662022YLYJ010)


High-throughput Measurement System for 3D Phenotype of Cucumber Seedlings Using RGB-D Camera
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    傳統(tǒng)的人工種苗表型測(cè)量方式存在效率低、主觀性強(qiáng)、誤差大、破壞種苗等問(wèn)題,提出了一種使用RGB-D相機(jī)的黃瓜苗表型無(wú)損測(cè)量方法。研制了自動(dòng)化多視角圖像采集平臺(tái),布署兩臺(tái)Azure Kinect相機(jī)同時(shí)拍攝俯視和側(cè)視兩個(gè)視角的彩色、深度、紅外和RGB-D對(duì)齊圖像。使用Mask R-CNN網(wǎng)絡(luò)分割近紅外圖像中的葉片和莖稈,再與對(duì)齊圖進(jìn)行掩膜,消除了對(duì)齊圖中的背景噪聲與重影并得到葉片和莖稈器官的對(duì)齊圖像。網(wǎng)絡(luò)實(shí)例分割結(jié)果的類(lèi)別和數(shù)量即為子葉和真葉的數(shù)量。使用CycleGAN網(wǎng)絡(luò)處理單個(gè)葉片的對(duì)齊圖,對(duì)缺失部分進(jìn)行修補(bǔ)并轉(zhuǎn)換為3D點(diǎn)云,再對(duì)點(diǎn)云進(jìn)行濾波實(shí)現(xiàn)保邊去噪,最后對(duì)點(diǎn)云進(jìn)行三角化測(cè)量葉面積。在Mask R-CNN分割得到的莖稈對(duì)齊圖像中,利用莖稈的近似矩形特征,分別計(jì)算莖稈的長(zhǎng)和寬,再結(jié)合深度信息轉(zhuǎn)換為下胚軸長(zhǎng)和莖粗。使用YOLO v5s檢測(cè)對(duì)齊圖中的黃瓜苗生長(zhǎng)點(diǎn),利用生長(zhǎng)點(diǎn)與基質(zhì)的高度差計(jì)算株高。實(shí)驗(yàn)結(jié)果表明,該系統(tǒng)具有很好的通量和精度,對(duì)子葉時(shí)期、1葉1心時(shí)期和2葉1心時(shí)期的黃瓜苗關(guān)鍵表型測(cè)量平均絕對(duì)誤差均不高于8.59%、R2不低于0.83,可以很好地替代人工測(cè)量方式,為品種選育、栽培管理、生長(zhǎng)建模等研究提供關(guān)鍵基礎(chǔ)數(shù)據(jù)。

    Abstract:

    The traditional method of artificial seedling phenotype measurement has some problems, such as low efficiency, strong subjectivity, large error and damaged seedlings. A method for nondestructive detection of cucumber seedling phenotype by using the RGB-D camera was proposed. An automated multi-view image acquisition platform was developed, and two Azure Kinect cameras were deployed to simultaneously capture color, depth, NIR, and RGB-D images from the top view and side view. The Mask R-CNN network was used to segment the leaves and stems in the NIR image, and then mask them with the RGB-D image to eliminate the background noise and ghost in the RGB-D images and obtain the RGB-D image of the leaves and stems. The category and number of segmentation results of the Mask R-CNN network were the numbers of cotyledons and true leaves. The CycleGAN network was used to process the RGB-D image of a single leaf, repair the missing and convert it into 3D point clouds, and then filter the point clouds to achieve edge-preserving denoising. Finally, the point clouds were triangulated to measure the leaf area. In the stem RGB-D image obtained by Mask R-CNN segmentation, the approximate rectangular feature of the stem was used to calculate the length and width of the stem respectively, and then the depth information was combined to convert the hypocotyl length and stem diameter. YOLOv5s was used to detect the growing point of cucumber seedlings in the RGB-D image, and the height difference between the growing point and the substrate was used to calculate the plant height. The experimental results showed that the system had good flux and accuracy. The mean absolute errors of key phenotypes of cucumber seedlings at cotyledon, 1 true-leaf and 2 true-leaf stages were all no more than 8.59% and R2 was no less than 0.83, which can well replace the manual measurement method, and provide key basic data for seed selection and breeding, cultivation management, growth modeling, and other research.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐勝勇,李磊,童輝,王成超,別之龍,黃遠(yuǎn).基于RGB-D相機(jī)的黃瓜苗3D表型高通量測(cè)量系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):204-213,281. XU Shengyong, LI Lei, TONG Hui, WANG Chengchao, BIE Zhilong, HUANG Yuan. High-throughput Measurement System for 3D Phenotype of Cucumber Seedlings Using RGB-D Camera[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):204-213,281.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼