亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于YOLO v5s和改進(jìn)SORT算法的黑水虻幼蟲計(jì)數(shù)方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

浙江省自然科學(xué)基金項(xiàng)目(LY22F030003)


Larvae of Black Soldier Fly Counting Based on YOLO v5s Network and Improved SORT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前農(nóng)業(yè)環(huán)境下的無序目標(biāo)的精確計(jì)數(shù)有很高的應(yīng)用需求,這種計(jì)數(shù)對其生物量、生物密度管理起到了重要的指導(dǎo)作用。如黑水虻幼蟲目標(biāo)追蹤過程中,追蹤對象具有高速和非線性的特征,常規(guī)算法存在追蹤目標(biāo)速度不足和丟失目標(biāo)后的再識別困難等問題。針對以上問題,本文提出了一種改進(jìn)SORT算法,通過改進(jìn)卡爾曼濾波模型的方式提升目標(biāo)追蹤算法的快速性和準(zhǔn)確性,提升了計(jì)數(shù)的精度。另外,針對黑水虻幼蟲目標(biāo)識別過程中幼蟲性狀的多樣性和混料導(dǎo)致的復(fù)雜背景問題,本文通過實(shí)驗(yàn)對比多種深度學(xué)習(xí)網(wǎng)絡(luò)性能選定YOLO v5s算法提取圖像多維度特征,提升了目標(biāo)識別精度。實(shí)驗(yàn)結(jié)果表明:在劃線計(jì)數(shù)方面,本文提出的改進(jìn)SORT算法與原模型相比,平均精度從91.36%提升到95.55%,提升4.19個(gè)百分點(diǎn),通過仿真和實(shí)際應(yīng)用,證明了本文模型的有效性;在目標(biāo)識別方面,使用YOLO v5s模型在訓(xùn)練集上幀率為156f/s,mAP@0.5為99.10%,精度為90.11%,召回率為99.22%,綜合性能優(yōu)于其他網(wǎng)絡(luò)。

    Abstract:

    There is a high application demand for accurate counting of disordered targets in agricultural environments, and such counting plays an important guiding role in their biomass and biological density management. In the process of larvae of black soldier fly target tracking, the tracking object has the characteristics of high speed and non-linearity, and the conventional algorithm has the problems of insufficient speed of tracking target and difficulty of re-identification after losing the target. To address these problems, an improved SORT algorithm was proposed, which improved the speed and accuracy of the target tracking algorithm by improving the Kalman filter model, and enhanced the counting accuracy. In addition, for the complex background problem caused by larval trait diversity and mixing in the process of black gadfly larval target recognition, the target recognition accuracy was improved by experimentally comparing the performance of multiple deep learning networks, which selected YOLO v5s algorithm to extract multidimensional features of images. The experimental results showed that in terms of delineation counting, the improved SORT algorithm improved the average accuracy by 4.19 percentage points compared with the original model, from 91.36% to 95.55%, and the effectiveness of the model was proved through simulation and practical application. In terms of target recognition, using the YOLO v5s model on the training set achieved a frame rate of 156f/s, mAP@0.5 value of 99.10%, accuracy of 90.11%, and recall rate of 99.22%. Its overall performance was better than other networks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙新龍,顧臻奇,李軍.基于YOLO v5s和改進(jìn)SORT算法的黑水虻幼蟲計(jì)數(shù)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):339-346. ZHAO Xinlong, GU Zhenqi, LI Jun. Larvae of Black Soldier Fly Counting Based on YOLO v5s Network and Improved SORT Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):339-346.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼