亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于紋理-顏色特征與植被指數(shù)融合的冬小麥LAI估測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2452020018)


Winter Wheat Leaf Area Index Estimation Based on Texture-color Features and Vegetation Indices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    準(zhǔn)確、快速、無(wú)損估測(cè)葉面積指數(shù)(LAI)對(duì)于冬小麥生產(chǎn)管理具有重要意義。利用無(wú)人機(jī)搭載Prime ALTUM多光譜相機(jī)獲取冬小麥拔節(jié)期、孕穗期、抽穗期、灌漿期多光譜圖像,利用LAI-2200C型植物冠層分析儀獲取地面LAI數(shù)據(jù)。通過(guò)Pearson相關(guān)性分析篩選出25個(gè)植被指數(shù),并提取植被指數(shù)影像中8種紋理特征:對(duì)比度(CON)、熵(ENT)、方差(VAR)、均值(MEA)、協(xié)同性(HOM)、相異性(DIS)、二階矩(SEM)和相關(guān)性(COR),以及3種顏色特征:一階矩(M)、二階矩(V)和三階矩(S),再分別利用多元逐步回歸模型(MSR)、支持向量回歸模型(SVR)和高斯過(guò)程回歸模型(GPR)構(gòu)建冬小麥LAI估測(cè)模型。結(jié)果表明:相對(duì)于考慮單一類型變量,考慮結(jié)合紋理特征和顏色特征進(jìn)行估測(cè)時(shí)模型精度更高;3類模型中,GPR模型估測(cè)冬小麥LAI的精度最高;所有模型中,基于紋理-顏色特征與植被指數(shù)融合的GPR模型估測(cè)冬小麥LAI精度最高(決定系數(shù)R2為0.94,均方根誤差(RMSE)為0.17m2/m2,平均絕對(duì)誤差(MAE)為0.13m2/m2,歸一化均方根誤差(NRMSE)為4.06%)。紋理特征和顏色特征能有效改善植被指數(shù)在高密度冠層下的飽和問(wèn)題,能夠從有限的信息中衍生得到更多信息用于更高精度地估測(cè)冬小麥LAI,從而為冬小麥長(zhǎng)勢(shì)監(jiān)測(cè)和生產(chǎn)管理提供理論依據(jù)。

    Abstract:

    Accurate, fast and non-destructive estimation of leaf area index (LAI) is of great significance for the production and management of winter wheat. Multi-spectral images were obtained by using the Prime ALTUM camera at the joining stage, booting stage, heading stage and filling stage of winter wheat, and the LAI was measured by using the LAI-2200C plant canopy analyzer. Totally twenty-five vegetation indices were selected based on the Pearson correlation analysis. And eight texture features were extracted: contrast (CON), entropy (ENT), variance (VAR), mean (MEA), homogeneity (HOM), dissimilarity (DIS), the second moment (SEM) and correlation (COR), and three color features: mean (M), variance (V) and skewness (S) were extracted as well. Then the multiple stepwise regression (MSR), support vector regression (SVR) and Gaussian process regression (GPR) models were used for winter wheat LAI inversion. The results showed that compared with single type variable-based models, models with combined texture and color features produced greater estimation accuracy;among the three types of models, GPR model outperformed the other two models in estimating winter wheat LAI;among all models, the GPR model with texture-color features and vegetation indices obtained the best estimation accuracy, with coefficient of determination (R2)of 0.94, root mean square error (RMSE) of 0.17m2/m2, mean absolute error (MAE) of 0.13m2/m2, and normal root mean square error (NRMSE) of 4.06%. The extraction of texture and color features can solve the oversaturation issue of vegetation indices under high-density canopy conditions, and more information can be derived for more accurate estimation of winter wheat LAI, which provided theoretical basis for winter wheat growth monitoring, production and management.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

范軍亮,王涵,廖振棋,戴裕瓏,余江,馮涵龍.基于紋理-顏色特征與植被指數(shù)融合的冬小麥LAI估測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):347-359. FAN Junliang, WANG Han, LIAO Zhenqi, DAI Yulong, YU Jiang, FENG Hanlong. Winter Wheat Leaf Area Index Estimation Based on Texture-color Features and Vegetation Indices[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):347-359.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼