亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

豬舍氨氣與二氧化碳濃度變化時(shí)序預(yù)測模型優(yōu)化
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金面上項(xiàng)目(32072787)、東北農(nóng)業(yè)大學(xué)東農(nóng)學(xué)者計(jì)劃項(xiàng)目(19YJXG02)和黑龍江省博士后資助項(xiàng)目(LBH-Q21070)


Optimal Prediction Model for Gas Concentrations of NH3 and CO2 Time-series in Pig House
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    NH3質(zhì)量濃度和CO2質(zhì)量濃度是豬舍環(huán)境精準(zhǔn)控制的重要指標(biāo)。由于畜禽舍氣體濃度具有時(shí)變性、非線性耦合等特點(diǎn),目前有害氣體濃度預(yù)測模型存在預(yù)測精度低的問題。提出了基于門控制循環(huán)單元(Gated recurrent unit,GRU)、改進(jìn)麻雀搜索算法(Improved sparrow search algorithm,ISSA)并融合差分整合移動(dòng)平均自回歸模型(Autoregressive integrated moving average model,ARIMA)的有害氣體濃度時(shí)序數(shù)據(jù)預(yù)測模型ISSA-GRU-ARIMA。首先構(gòu)建了GRU氣體濃度時(shí)序預(yù)測模型,然后通過引入Tent混沌序列、混沌擾動(dòng)和高斯變異增強(qiáng)ISSA算法的局部尋優(yōu)能力,實(shí)現(xiàn)GRU模型超參數(shù)優(yōu)化;然后利用統(tǒng)計(jì)學(xué)習(xí)ARIMA方法提取優(yōu)化后的ISSA-GRU模型預(yù)測殘差的線性特征,最終達(dá)到提升模型預(yù)測精度的目的。以采集的52d豬舍環(huán)境的1248組數(shù)據(jù)對模型進(jìn)行訓(xùn)練和測試。結(jié)果表明,ISSA-GRU-ARIMA模型NH3質(zhì)量濃度預(yù)測的均方根誤差(RMSE)、平均絕對百分比誤差(MAPE)和決定系數(shù)R2分別為0.263mg/m3、8.171%和0.928,CO2質(zhì)量濃度預(yù)測的分別為55.361mg/m3、4.633%和0.985。本文構(gòu)建的ISSA-GRU-ARIMA模型具有較高的預(yù)測精度,可為豬舍有害氣體濃度精準(zhǔn)控制提供科學(xué)依據(jù)。

    Abstract:

    Concentrations of ammonia and carbon dioxide are important indicators for indoor environment control in pig house. Due to the time-varying and nonlinear coupling characteristics of gas concentration, the prediction accuracy of pig house environment prediction models is still relatively low. Aiming to achieve the precision control for gases concentration in pig house, a time-series data prediction model named ISSA-GRU-ARIMA for harmful gas concentrations was proposed based on gated recurrent unit (GRU), improved sparrow search algorithm (ISSA) fused with autoregressive integrated moving average model (ARIMA). Firstly, a GRU gas concentration time series prediction model was constructed, and Tent chaotic sequence, chaotic disturbance and Gaussian mutation were introduced to enhance the local optimization ability of ISSA algorithm and optimize the hyperparameters of GRU model;then the statistical learning ARIMA method was used to extract the linear features of the optimized ISSA-GRU model’s prediction residuals in order to improve the prediction accuracy of the model. A dataset with 1248 environment data that collected for 52d was used for model training and testing. It was shown that the RMSE, MAPE and R2 of ISSA-GRU-ARIMA model for ammonia concentration prediction were 0.263mg/m3, 8.171% and 0.928, respectively, and those for carbon dioxide concentration prediction were 55.361mg/m3, 4.633% and 0.985, respectively. The constructed ISSA-GRU-ARIMA had high predictive performance, it can provide scientific basis for accurate control of harmful gases in pig house.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

謝秋菊,馬超凡,王圣超,包軍,劉洪貴,于海明.豬舍氨氣與二氧化碳濃度變化時(shí)序預(yù)測模型優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(7):381-391. XIE Qiuju, MA Chaofan, WANG Shengchao, BAO Jun, LIU Honggui, YU Haiming. Optimal Prediction Model for Gas Concentrations of NH3 and CO2 Time-series in Pig House[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):381-391.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼