亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SSA-RFR算法的采棉機(jī)測(cè)產(chǎn)傳感器研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中國(guó)機(jī)械工業(yè)集團(tuán)有限公司重大科技專項(xiàng)(ZDZX2020-2)


Yield Sensor of Cotton Picker Based on SSA-RFR Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    隨著棉花種植和收獲的機(jī)械化程度提高,獲取準(zhǔn)確的產(chǎn)量圖,分析田間產(chǎn)量數(shù)據(jù),變得尤為重要,而采棉機(jī)作業(yè)時(shí)在輸棉管道處監(jiān)測(cè)產(chǎn)量是一種有效、可行的方法?,F(xiàn)有光電對(duì)射式棉花測(cè)產(chǎn)傳感器在作業(yè)中會(huì)有粘液遮擋檢測(cè)通道、環(huán)境光影響等問(wèn)題,面對(duì)復(fù)雜的田間作業(yè)環(huán)境,傳感器標(biāo)定普遍采用線性或多項(xiàng)式模型,精度和抗干擾性表現(xiàn)不夠理想。針對(duì)上述現(xiàn)狀,本文首先在傳感器的結(jié)構(gòu)和電路設(shè)計(jì)上做了抗干擾改進(jìn)。然后在傳感器標(biāo)定過(guò)程中,嘗試使用隨機(jī)森林回歸模型(Random forest regression,RFR),對(duì)實(shí)驗(yàn)樣本進(jìn)行訓(xùn)練、測(cè)試。在分析模型的表現(xiàn)后,提出了麻雀算法(Sparrow search algorithm, SSA)改進(jìn)的隨機(jī)森林回歸模型,以均方誤差作為適應(yīng)度,對(duì)模型進(jìn)行優(yōu)化。經(jīng)過(guò)驗(yàn)證,在相同驗(yàn)證集下,優(yōu)化后的模型有更好的檢測(cè)精確度。通過(guò)研究尋優(yōu)上下界范圍,平衡運(yùn)行時(shí)間和檢測(cè)精度,得到最優(yōu)檢測(cè)模型。該模型在驗(yàn)證集上表現(xiàn)良好,決定系數(shù)R2為0.99,平均絕對(duì)百分比誤差(MAPE)為6.34%。臺(tái)架實(shí)驗(yàn)結(jié)果表明,不同風(fēng)速下最大誤差為9.21%,平均誤差為8.33%,改進(jìn)后的傳感器及檢測(cè)模型性能良好,能夠較準(zhǔn)確檢測(cè)采棉機(jī)作業(yè)時(shí)棉花產(chǎn)量。

    Abstract:

    With the increase of mechanization of cotton planting and harvesting, it is particularly important to obtain accurate yield map and analyze field yield data, and it is an effective and feasible method to monitor the yield at the cotton conveying pipeline during the operation of cotton picker. The existing photoelectric beam cotton yield measurement sensor has problems such as mucus blocking detection channel and ambient light influence in operation. Facing the complex field working environment, linear or polynomial model is generally used for sensor calibration, and the accuracy and anti-interference performance are not ideal. In view of the above situation, the anti-interference in the structure and circuit design of the sensor was firstly improved. Then, in the process of sensor calibration, random forest regression (RFR) was used to train and test the experimental samples. After analyzing the performance of the model, a stochastic forest regression model based on sparrow search algorithm (SSA) was proposed. The mean square error was used as fitness value to optimize the model. After verification, the optimized model had better detection accuracy under the same verification set. The optimal detection model was obtained by optimizing the range of upper and lower bounds, balancing the running time and detection accuracy. The model performed well on the validation set with a coefficient of determination (R2) of 0.99 and a mean absolute percentage error (MAPE) of 6.34%. The bench test results showed that the maximum error was 9.21% and the average error was 8.33% at different wind speeds. The improved sensor and detection model had good performance and can accurately detect the cotton quality during the operation of the cotton picker.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

偉利國(guó),馬若飛,周利明,隗立昂,劉陽(yáng)春,趙博.基于SSA-RFR算法的采棉機(jī)測(cè)產(chǎn)傳感器研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(9):154-163. WEI Liguo, MA Ruofei, ZHOU Liming, WEI Li’ang, LIU Yangchun, ZHAO Bo. Yield Sensor of Cotton Picker Based on SSA-RFR Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):154-163.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼