亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SEEC-YOLO v5s的散養(yǎng)蛋雞日常行為識別與統(tǒng)計系統(tǒng)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32172779)、財政部和農業(yè)農村部:國家現代農業(yè)產業(yè)技術體系項目(CARS-40)和河北省科技研發(fā)平臺建設專項(225676150H)


Daily Behavior Recognition and Real-time Statistics System of Free-range Laying Hens Based on SEEC-YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對雞只個體較小、個體間存在遮擋,對蛋雞日常行為識別造成干擾的問題,提出了一種基于SEEC-YOLO v5s的蛋雞日常行為識別方法。通過在YOLO v5s模型輸出部分添加SEAM注意力模塊、在特征融合部分引入顯式視覺中心模塊(EVCBlock),擴大了模型的感受野,提高了模型對小個體遮擋情況下的目標識別能力,提升了模型對蛋雞站立、采食、飲水、探索、啄羽和梳羽6種行為的識別精度。提出了一種基于視頻幀數與視頻幀率比值計算蛋雞日常行為持續(xù)時間的統(tǒng)計方法,并對蛋雞群體一天之中不同時間段及全天各行為變化規(guī)律進行了分析。將改進后的模型進行封裝、打包,設計了蛋雞日常行為智能識別與統(tǒng)計系統(tǒng)。試驗結果表明,SEEC-YOLO v5s模型對6種行為識別的平均精度均值為84.65%,比 YOLO v5s模型高2.34個百分點,對比Faster R-CNN、YOLO X-s、YOLO v4-tiny和YOLO v7-tiny模型,平均精度均值分別提高4.30、3.06、7.11、2.99個百分點。本文方法對蛋雞的日常行為監(jiān)測及健康狀況分析提供了有效的支持,為智慧養(yǎng)殖提供了借鑒。

    Abstract:

    The small size of the chickens and the shading of the chickens from each other are factors that make it difficult to identify the daily behaviour of laying hens. To address this problem, a method of daily behavior identification of laying hens based on SEEC-YOLO v5s was proposed. By adding a SEAM attention module (separated and enhancement attention module) to the output part of the YOLO v5s model and introducing an EVCBlock module (explicit visual center) to the feature fusion part, the perceptual field of the model was expanded, the recognition ability of the model for occluded targets was improved, and the recognition accuracy of the model for the six behaviors of standing, feeding, drinking, exploring, feather pecking and grooming of laying hens was improved. A statistical method was proposed to calculate the duration of daily behavior of laying hens based on the ratio of video frames to video frame rate, and various behavioral changes of laying hens at different times of the day and throughout the day were analyzed. The improved model was encapsulated and packaged to develop an intelligent identification and automatic statistics system for the daily behavior of laying hens. The test results showed that the mAP of SEEC-YOLO v5s model for six behaviors recognition was 84.65%, which was 2.34 percentage points higher than that of YOLO v5s model, and compared with that of Faster R-CNN, YOLO X-s, YOLO v4-tiny and YOLO v7-tiny models, the mAP was improved by 4.30 percentage points, 3.06 percentage points, 7.11 percentage points and 2.99 percentage points, respectively. The method can provide effective support for daily behavior monitoring and health condition analysis of laying hens, and provide a reference for smart farming.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊斷利,王永勝,陳輝,孫二東,王連增,寧煒.基于SEEC-YOLO v5s的散養(yǎng)蛋雞日常行為識別與統(tǒng)計系統(tǒng)[J].農業(yè)機械學報,2023,54(9):316-328. YANG Duanli, WANG Yongsheng, CHEN Hui, SUN Erdong, WANG Lianzeng, NING Wei. Daily Behavior Recognition and Real-time Statistics System of Free-range Laying Hens Based on SEEC-YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):316-328.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼