亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于機(jī)器學(xué)習(xí)與氣象災(zāi)害指標(biāo)的蘋果相對氣象產(chǎn)量預(yù)測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1900700)、陜西省重點(diǎn)研發(fā)計(jì)劃重點(diǎn)產(chǎn)業(yè)創(chuàng)新鏈(群)-農(nóng)業(yè)領(lǐng)域項(xiàng)目(2019ZDLNY07-03)、西北農(nóng)林科技大學(xué)人才專項(xiàng)資金項(xiàng)目(千人計(jì)劃項(xiàng)目)和高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(111計(jì)劃)項(xiàng)目(B12007)


Prediction of Apple Relative Meteorological Yields Based on Machine Learning and Meteorological Disaster Indices
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為及時(shí)準(zhǔn)確地預(yù)測我國黃土高原蘋果產(chǎn)量,首先選取黃土高原蘋果產(chǎn)區(qū)86個(gè)基地縣的氣象觀測數(shù)據(jù),分別提取出蘋果生長季內(nèi)不同月份的氣溫、降水量、太陽輻射等氣象特征變量,花期凍害時(shí)間、連陰雨時(shí)間和標(biāo)準(zhǔn)化降水蒸發(fā)指數(shù)(Standardized precipitation evapotranspiration index,SPEI)等氣象災(zāi)害特征變量,以及氣象站點(diǎn)經(jīng)度、緯度和高程等空間特征變量,再根據(jù)斯皮爾曼相關(guān)性分析確定影響蘋果產(chǎn)量的最重要?dú)庀筇卣髯兞?。然后,采用梯度提升樹(Gradient boosting decision tree,GBDT)、支持向量機(jī)(Support vector machine,SVM)、貝葉斯正則化反向傳播神經(jīng)網(wǎng)絡(luò)(Bayesian regularization back propagation artificial neural network, BRBP)和多元線性回歸(Multiple linear regression, MLR)算法,建立蘋果相對氣象產(chǎn)量的預(yù)測模型,并確定最佳模型輸入特征變量組合。最后,基于不同生育期和生長季內(nèi)各月份最佳模型輸入特征變量組合,分析不同模型預(yù)測蘋果相對氣象產(chǎn)量的提前期。結(jié)果表明:影響蘋果相對氣象產(chǎn)量的最重要?dú)庀筇卣髯兞繛樽罡邭鉁?、最低氣溫、空氣相對濕度、降水量和太陽輻?最佳模型輸入變量組合為最重要?dú)庀筇卣髯兞?、空間特征變量和災(zāi)害特征變量;基于最佳模型輸入變量組合,GBDT和BRBP模型精度較好(相關(guān)系數(shù)r為0.77,均方根誤差(RMSE)為0.44;r為0.70,RMSE為0.44),而MLR模型表現(xiàn)最差(r為0.63,RMSE為0.49)。在蘋果不同生育期內(nèi),GBDT和BRBP模型在各個(gè)生育期內(nèi)均能獲得相對較高的蘋果相對氣象產(chǎn)量預(yù)測精度,SVM和MLR模型可在果實(shí)膨大期獲取較為理想的蘋果相對氣象產(chǎn)量模擬結(jié)果。在蘋果生長季內(nèi)各月份,GBDT、SVM、BRBP和MLR模型可在蘋果成熟期前1~2個(gè)月實(shí)現(xiàn)對蘋果相對氣象產(chǎn)量的早期預(yù)測。本研究可為黃土高原蘋果產(chǎn)量早期產(chǎn)量預(yù)測提供科學(xué)依據(jù)和技術(shù)參考。

    Abstract:

    Aiming to predict apple production in Loess Plateau in a timely and accurate manner, based on historical weather records in a total of 86 counties in the apple producing areas of the Loess Plateau, the data of different meteorological feature variables (e.g., temperature, precipitation, and radiation in different apple growing months), spatial feature variables (e.g., latitude, longitude and elevation of meteorological stations), and meteorological disaster feature variables (e.g., time of freezing damage at flowering stage, time of continuous rain, and standardized precipitation evapotranspiration index (SPEI)) were extracted at first. The influential feature factors were determined according to Spearman correlation analysis. Nextly, the prediction models for apple relative meteorological yield were established based on different algorithms (i.e., gradient boosting decision tree, GBDT;support vector machine, SVM;Bayesian regularization back propagation artificial neural network, BRBP;multiple linear regression, MLR). At the same time, the optimal combination of model input feature variables was determined for each of the established yield prediction models. Finally, based on the optimal combinations of input feature variables in different apple growth periods and in different months of apple growing seasons, the prediction leading time were analyzed for different simulation models for apple relative meteorological yield. The results were as follows: the influential meteorological feature variables were the highest temperature, lowest temperature, air relative humidity, precipitation and solar radiation. The best model input variable combination was selected as the influential meteorological, spatial and disaster feature variables. Based on the best combination of model input variables, the GBDT and BRBP models had better prediction accuracy (r was 0.77, RMSE was 0.44;r was 0.70, RMSE was 0.44), while the MLR model performed the worst (r was 0.63, RMSE was 0.49). In different growth periods of apples, the GBDT and BRBP models could obtain relatively high apple yield prediction accuracy in each growth period, while the SVM and MLR models could obtain relatively ideal simulation results in apple fruit expansion period. In each month of the apple growing season, the GBDT, SVM, BRBP and MLR models could realize early prediction of apple relative meteorological yield about one to two months before apple maturity. The research result can provide a scientific foundation and technical reference for apple yield prediction on the Loess Plateau.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

羅琦,茹曉雅,姜元,馮浩,于強(qiáng),何建強(qiáng).基于機(jī)器學(xué)習(xí)與氣象災(zāi)害指標(biāo)的蘋果相對氣象產(chǎn)量預(yù)測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(9):352-364. LUO Qi, RU Xiaoya, JIANG Yuan, FENG Hao, YU Qiang, HE Jianqiang. Prediction of Apple Relative Meteorological Yields Based on Machine Learning and Meteorological Disaster Indices[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):352-364.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼