亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLO v7的輕量化櫻桃番茄成熟度檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山西省基礎(chǔ)研究計劃項目(202203021212414、202203021212428)和山西農(nóng)業(yè)大學(xué)青年科技創(chuàng)新基金項目(J142102257)


Lightweight Maturity Detection of Cherry Tomato Based on Improved YOLO v7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為在自然環(huán)境下自動準(zhǔn)確地檢測櫻桃番茄果實的成熟度,實現(xiàn)櫻桃番茄果實自動化采摘,根據(jù)成熟期櫻桃番茄果實表型特征的變化以及國家標(biāo)準(zhǔn)GH/T 1193—2021制定了5級櫻桃番茄果實成熟度級別(綠熟期、轉(zhuǎn)色期、初熟期、中熟期和完熟期),并針對櫻桃番茄相鄰成熟度特征差異不明顯以及果實之間相互遮擋問題,提出一種改進(jìn)的輕量化YOLO v7模型的櫻桃番茄果實成熟度檢測方法。該方法將MobileNetV3引入YOLO v7模型中作為骨干特征提取網(wǎng)絡(luò),以減少網(wǎng)絡(luò)的參數(shù)量,同時在特征融合網(wǎng)絡(luò)中加入全局注意力機(jī)制(Global attention mechanism,GAM)模塊以提高網(wǎng)絡(luò)的特征表達(dá)能力。試驗結(jié)果表明,改進(jìn)的YOLO v7模型在測試集下的精確率、召回率和平均精度均值分別為98.6%、98.1%和98.2%,單幅圖像平均檢測時間為82ms,模型內(nèi)存占用量為66.5MB。對比Faster R-CNN、YOLO v3、YOLO v5s和YOLO v7模型,平均精度均值分別提升18.7、0.2、0.3、0.1個百分點,模型內(nèi)存占用量也最少。研究表明改進(jìn)的YOLO v7模型能夠為櫻桃番茄果實的自動化采摘提供技術(shù)支撐。

    Abstract:

    Automatic and accurate detection of cherry tomato maturity in natural environment is the foundation for achieving automatic cherry tomato picking. According to the changes in phenotypic characteristics of cherry tomato during its mature period and the national standard GH/T 1193—2021, and regarding the lack of significant differences in adjacent maturity characteristics of cherry tomatoes and the problem of mutual occlusion between fruits, a lightweight maturity detection method of cherry tomato with five levels, including green, turning, pink, lightred and red was proposed based on improved YOLO v7 model. In this model, MobileNetV3 was introduced into the original YOLO v7 model as backbone for feature extraction to reduce the parameters of the original model; global attention mechanism (GAM) module was added to the feature fusion network to improve the feature expression ability of the model. The experimental results showed that the precision, recall and mean average precision of the improved model were 98.6%, 98.1% and 98.2%, respectively, the average detection time of a single image was 82ms, and the memory occupied by the model was 66.5MB. Compared with Faster R-CNN, YOLO v3, YOLO v5s and YOLO v7 models, the mean average precision (mAP) was improved by 18.7, 0.2, 0.3 and 0.1 percentage points, respectively. The average accuracy of the improved YOLO v7 model was also improved, and memory usage of the model was optimal. The results showed that the improved YOLO v7 model can provide effective exploration for automated cherry tomato fruit picking.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

苗榮慧,李志偉,武錦龍.基于改進(jìn)YOLO v7的輕量化櫻桃番茄成熟度檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(10):225-233. MIAO Ronghui, LI Zhiwei, WU Jinlong. Lightweight Maturity Detection of Cherry Tomato Based on Improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):225-233.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-25
  • 出版日期:
文章二維碼