亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于弱監(jiān)督數(shù)據(jù)集的豬只圖像實(shí)例分割
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1601903)、湖北省科技重大專項(xiàng)(2022ABA002)、華中農(nóng)業(yè)大學(xué)-中國(guó)農(nóng)業(yè)科學(xué)院深圳農(nóng)業(yè)基因組研究所合作基金項(xiàng)目(SZYJY2022034)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2662022XXYJ009)


Pig Image Instance Segmentation Based on Weakly Supervised Dataset
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在智慧養(yǎng)殖研究中,基于深度學(xué)習(xí)的豬只圖像實(shí)例分割方法,是豬只個(gè)體識(shí)別、體重估測(cè)、行為識(shí)別等下游任務(wù)的關(guān)鍵。為解決模型訓(xùn)練需要大量的逐像素標(biāo)注圖像,以及大量的人力和時(shí)間成本的問題,采用弱監(jiān)督豬只分割策略,制作弱監(jiān)督數(shù)據(jù)集,提出一種新的特征提取骨干網(wǎng)絡(luò)RdsiNet:首先在ResNet-50殘差模塊基礎(chǔ)上引入第2代可變形卷積,擴(kuò)大網(wǎng)絡(luò)感受野;其次,使用空間注意力機(jī)制,強(qiáng)化網(wǎng)絡(luò)對(duì)重要特征的權(quán)重值;最后引入involution算子,借助其空間特異性和通道共享性,實(shí)現(xiàn)加強(qiáng)深層空間信息、將特征映射同語(yǔ)義信息連接的功能。通過消融實(shí)驗(yàn)和對(duì)比實(shí)驗(yàn)證明了RdsiNet對(duì)于弱監(jiān)督數(shù)據(jù)集的有效性,實(shí)驗(yàn)結(jié)果表明其在Mask R-CNN模型下分割的mAPSemg達(dá)到88.6%,高于ResNet-50、GCNet等一系列骨干網(wǎng)絡(luò);在BoxInst模型下mAPSemg達(dá)到95.2%,同樣高于ResNet-50骨干網(wǎng)絡(luò)的76.7%。而在分割圖像對(duì)比中,使用RdsiNet骨干網(wǎng)絡(luò)的分割模型同樣具有更好的分割效果:在圖像中豬只堆疊情況下,能更好地分辨豬只個(gè)體;使用BoxInst訓(xùn)練的模型,測(cè)試圖像中掩碼具有更高的精細(xì)度,這更有利于開展下游分析。

    Abstract:

    In smart livestock farming research, deep learningbased method for pig image instance segmentation is crucial for downstream tasks such as individual pig recognition, weight estimation, and behavior recognition. However, the model often requires a large number of pixel-wise annotated images for training, which imposes significant manpower and time costs. To address this issue, a weakly supervised pig segmentation strategy was proposed, creating a weakly supervised dataset, and introducing afeature extraction backbone network called RdsiNet. Firstly, the second-generation deformable convolution was incorporated into the ResNet-50 residual module to expand the network's receptive field. Secondly, spatial attention mechanisms were used to strengthen the network's weight values for important features. Finally, the involution operator was introduced to enhance deep spatial information and connect feature maps with semantic information by using its spatial specificity and channel sharing mechanism. The efficacy of RdsiNet for weakly supervised datasets was demonstrated through ablation experiments and comparative experiments. The experiments showed that the mean value of mask AP under the Mask R-CNN reached 88.6%, which was higher than a series of backbone networks such as ResNet-50 and GCNet.Meanwhile,the mean value of mask AP under the BoxInst reached 95.2%, which was also higher than that of ResNet-50 which reached only 76.7%. Furthermore, the display of image segmentation results of the test set showd RdsiNet also had better segmentation effect than ResNet-50. In the case of pig stacking, RdsiNet can better distinguish each pig. When using the BoxInst for training, RdsiNet can perfectly segment the outline of pigs, which was more conducive to downstream analysis.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王海燕,江燁皓,黎煊,馬云龍,劉小磊.基于弱監(jiān)督數(shù)據(jù)集的豬只圖像實(shí)例分割[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):255-265. WANG Haiyan, JIANG Yehao, LI Xuan, MA Yunlong, LIU Xiaolei. Pig Image Instance Segmentation Based on Weakly Supervised Dataset[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):255-265.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-06-16
  • 出版日期:
文章二維碼