亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于BOA-SVM模型的區(qū)域洪水災(zāi)害風(fēng)險評估與驅(qū)動機制
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(52179008、51579044、41071053)、國家杰出青年科學(xué)基金項目(51825901)、國家自然科學(xué)基金聯(lián)合基金項目(U20A20318)和清華大學(xué)水圈科學(xué)與水利工程全國重點實驗室開放基金項目(sklhse-2023-A-04)


Regional Flood Disaster Risk Assessment and Driving Mechanism Based on BOA-SVM Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對區(qū)域洪水災(zāi)害風(fēng)險定量評估方法精度不足問題,構(gòu)建了一種基于蝴蝶優(yōu)化算法改進的支持向量機模型(Butterfly optimization algorithm-support vector machine, BOA-SVM),并將其應(yīng)用于黑龍江省近15年的洪水災(zāi)害風(fēng)險評估與時空特征分析。結(jié)果表明:研究時段內(nèi),黑龍江省總體洪水風(fēng)險水平前期升降變化明顯,而后期逐漸趨于平穩(wěn),并呈現(xiàn)西北部高、東南部低的空間分布格局。其中,大慶地區(qū)洪水風(fēng)險水平最低,綏化地區(qū)風(fēng)險水平最高,其余地區(qū)風(fēng)險水平隨年際變化有明顯下降趨勢。產(chǎn)水模數(shù)、人均GDP、月強降水量、農(nóng)林漁業(yè)總產(chǎn)值占比、人口自然增長率、每萬人擁有衛(wèi)生機構(gòu)床位數(shù)、萬公頃水庫總庫容為洪水風(fēng)險變化的關(guān)鍵驅(qū)動因子。構(gòu)建的BOA-SVM模型與傳統(tǒng)支持向量機模型(Support vector machine, SVM)和基于帝國競爭算法改進的支持向量機模型(Imperialist competitive algorithm-support vector machine, ICA-SVM)相比,平均絕對誤差(MAE)分別降低38.15%和9.18%,均方誤差(MSE)分別降低58.5%和21.56%,平均絕對百分比誤差(MAPE)分別降低35.23%和11.42%、決定系數(shù)(R2)分別增長0.62%和0.12%,說明BOA-SVM模型在擬合性、適配性、穩(wěn)定性、可靠性以及評估精度等方面更具優(yōu)勢。研究成果可為洪水災(zāi)害風(fēng)險評估提供一種新模型,同時可為有效調(diào)控和降低區(qū)域洪水災(zāi)害風(fēng)險提供參考。

    Abstract:

    Aiming at the problem of insufficient accuracy of the regional flood disaster risk quantitative assessment method, an improved support vector machine model based on the butterfly optimization algorithm was constructed and applied to the flood disaster risk assessment and spatio-temporal characteristics analysis in Heilongjiang Province in the past 15 years. The results showed that during the study period, the overall flood risk level in Heilongjiang Province fluctuated significantly in the early stage, but gradually stabilized in the later stage, and showed a spatial distribution pattern of high in the northwest and low in the southeast. Among them, the flood risk level in the Daqing area was the lowest, the risk level in the Suihua area was the highest, and the risk level in the rest of the areas had a clear downward trend with the inter-annual variation. Water production modulus, per capita GDP, monthly strongest precipitation, proportion of total output value of agriculture, forestry and fishery, natural population growth rate, number of health care beds per 10000 people, and total storage capacity of 10000 hectares of reservoirs were the key driving factors for changes in flood risk. Compared with the traditional support vector machine model and the improved support vector machine model based on the imperialist competitive algorithm, the constructed BOA-SVM model, mean absolute error was decreased by 38.15% and 9.18%, the mean square error was decreased by 58.5% and 21.56%, the mean absolute percentage error was decreased by 35.23% and 11.42%, respectively, and the model fit was excellent. The coefficent of determination was increased by 0.62% and 0.12% respectively, indicating that the BOA-SVM model had more advantages in terms of fit, adaptability, stability, reliability and evaluation accuracy. The research results can provide a model for flood disaster risk assessment, and provide reference for effective regulation and reduction of regional flood disaster risk.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉東,楊丹,張亮亮,李佳民,趙丹.基于BOA-SVM模型的區(qū)域洪水災(zāi)害風(fēng)險評估與驅(qū)動機制[J].農(nóng)業(yè)機械學(xué)報,2023,54(10):304-315. LIU Dong, YANG Dan, ZHANG Liangliang, LI Jiamin, ZHAO Dan. Regional Flood Disaster Risk Assessment and Driving Mechanism Based on BOA-SVM Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):304-315.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-15
  • 出版日期:
文章二維碼