亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于視觸覺與深度學(xué)習(xí)的獼猴桃無損硬度檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家柑橘產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-Citrus)、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021YFD1400802-4、2020YFD1000101)、國家數(shù)字種植業(yè)(果園)創(chuàng)新分中心項(xiàng)目(農(nóng)規(guī)發(fā)[2022]10號(hào))和柑橘全程機(jī)械化科研基地建設(shè)項(xiàng)目(農(nóng)計(jì)發(fā)[2017]19號(hào))


Non-destructive Firmness Testing of Kiwifruit Based on Visioned-based Tactile Sensor and Fusion Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    硬度是確定獼猴桃成熟度的重要指標(biāo)之一,對(duì)其貯藏周期與銷售節(jié)點(diǎn)均具有重要指導(dǎo)意義。針對(duì)現(xiàn)階段缺乏使用簡易、成本低且精度高的獼猴桃無損硬度檢測方法的問題,提出了一種基于視觸覺與深度學(xué)習(xí)的獼猴桃硬度檢測方法,通過分析柔性觸覺傳感層與獼猴桃接觸時(shí)的形變,獲取獼猴桃的動(dòng)態(tài)觸覺信息,并據(jù)此推斷其硬度。以樹莓派開發(fā)板為機(jī)電控制平臺(tái),制作了獼猴桃視觸覺序列圖像采集裝置,并對(duì)裝置按壓獼猴桃間隔3h后接觸面果肉與非接觸面果肉的CIELAB顏色分量平均數(shù)進(jìn)行差異顯著性檢驗(yàn),隨后采集了獼猴桃視觸覺序列圖像數(shù)據(jù)集600組,分別搭建了CNN網(wǎng)絡(luò)、CNN-LSTM遷移學(xué)習(xí)網(wǎng)絡(luò)、CNN-LSTM聯(lián)合學(xué)習(xí)網(wǎng)絡(luò)對(duì)視觸覺序列圖像進(jìn)行分析及硬度預(yù)測。研究結(jié)果表明,接觸面果肉與非接觸面果肉顏色L*、a*、b*三通道分量下平均值無顯著差異;深度學(xué)習(xí)模型LSTM引入長時(shí)和短時(shí)信息可以動(dòng)態(tài)關(guān)聯(lián)CNN提取的單幀圖像特征,從而有效推斷獼猴桃硬度,其中CNN-LSTM聯(lián)合學(xué)習(xí)模型預(yù)測效果最優(yōu),其均方根誤差(RMSE)、平均絕對(duì)誤差(MAE)、決定系數(shù)R2分別為 1.611N、1.360N、0.856,優(yōu)于現(xiàn)階段光譜技術(shù)檢測獼猴桃硬度的結(jié)果,隨后將模型嵌入樹莓派中制作了獼猴桃硬度自動(dòng)檢測裝置,可實(shí)現(xiàn)短時(shí)間內(nèi)獼猴桃硬度的較為準(zhǔn)確檢測。因此,結(jié)合視觸覺傳感方法與聯(lián)合學(xué)習(xí)模型可以實(shí)現(xiàn)對(duì)單個(gè)獼猴桃硬度的準(zhǔn)確無損測量。

    Abstract:

    Firmness is one of the vital indicators to confirm the maturity of kiwifruits, which is of most significance to its storage cycle and sales node. In view of lacking non-destructive testing methods with high precision, low cost and easy use for kiwifruits at the present stage, a non-destructive testing method for kiwifruits firmness was proposed based on vision-based tactile sensor and deep learning technology. The dynamic tactile information of kiwifruit were obtained by analyzing the deformation of the flexible tactile sensing layer when it contacted with the kiwifruit, which could infer its firmness accordingly. By using the Raspberry Pi development board as an electromechanical control platform, a non-destructive firmness testing device for kiwifruit was developed and significant difference tests were conducted on the average CIELAB color components of the contact and non-contact surfaces after pressing the kiwifruit for an interval of 3 h. Subsequently, totally 600 sets of visual tactile sequence image datasets of kiwifruits were collected. At the same time, by setting the CNN network, the CNN-LSTM migration learning network and the CNN-LSTM joint learning network respectively, the firmness of visual tactile sequence images was analyzed and predicted. The research results showed that there was no significant difference between the average values of contact and noncontact surfaces under the three colors’ components L*,a*, and b*. By introducing long-term and short-term information, the deep learning model LSTM can dynamically correlate the features of a single frame image extracted by CNN, thereby effectively inferring the firmness of kiwifruit. Among them, the CNN-LSTM fusion learning model had the best prediction effect, with the root mean square error (RMSE), average absolute error (MAE), and determination coefficient (R2)values of 1.611N, 1.360N, and 0.856, respectively, which was superior to the results of current spectral technology in detecting the firmness of kiwifruit. Subsequently, the model was embedded into the Raspberry Pi to create an automatic kiwifruit firmness detection device, which can achieve testing kiwifruit firmness in a short time. Combining visual and tactile sensing methods with CNN-LSTM fusion learning model can achieve accurate and non-destructive measurement of the firmness of a single kiwifruit. As well, the research result can also provide technical reference for non-destructive testing of kiwifruit firmness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

林家豪,張?jiān)獫?梁千月,陳耀暉,朱明,李善軍.基于視觸覺與深度學(xué)習(xí)的獼猴桃無損硬度檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(10):390-398. LIN Jiahao, ZHANG Yuanze, LIANG Qianyue, CHEN Yaohui, ZHU Ming, LI Shanjun. Non-destructive Firmness Testing of Kiwifruit Based on Visioned-based Tactile Sensor and Fusion Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(10):390-398.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-08
  • 出版日期:
文章二維碼