亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)U-Net的火龍果采摘圖像分割和姿態(tài)估計(jì)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省農(nóng)業(yè)科技創(chuàng)新“揭榜掛帥”項(xiàng)目(2022SDZG03-5)和嶺南現(xiàn)代農(nóng)業(yè)實(shí)驗(yàn)室科研項(xiàng)目(NZ2021038)


Image Segmentation and Pose Estimation Method for Pitaya Picking Robot Based on Enhanced U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了實(shí)現(xiàn)火龍果采收自動(dòng)化作業(yè),提出一種基于改進(jìn)U-Net的火龍果圖像分割和姿態(tài)估計(jì)方法。首先,在U-Net 模型的跳躍連接(編碼器與解碼器部分特征圖進(jìn)行的連接操作)中引入通道和空間注意力機(jī)制模塊(Concurrent spatial and channel squeeze and channel excitation, SCSE),同時(shí)將SCSE模塊集成到殘差模塊(Double residual block, DRB)中,在增強(qiáng)網(wǎng)絡(luò)提取有效特征能力的同時(shí)提高網(wǎng)絡(luò)的收斂速度,得到一種基于注意力殘差U-Net的火龍果圖像分割網(wǎng)絡(luò)。通過(guò)該網(wǎng)絡(luò)分割出果實(shí)及其附生枝條的掩膜圖像,利用圖像處理技術(shù)和相機(jī)成像模型擬合出果實(shí)及其附生枝條的輪廓、果實(shí)質(zhì)心、果實(shí)最小外接矩形框和三維邊界框,進(jìn)而結(jié)合果實(shí)及其附生枝條的位置關(guān)系進(jìn)行火龍果三維姿態(tài)估計(jì),并在火龍果種植園中獲得一個(gè)測(cè)試集,以評(píng)價(jià)該算法的性能,最后在自然果園環(huán)境下進(jìn)行實(shí)地采摘試驗(yàn)。試驗(yàn)結(jié)果表明,火龍果果實(shí)圖像分割平均交并比(mIoU)和平均像素準(zhǔn)確率(mPA)分別達(dá)到86.69%和93.89%,三維姿態(tài)估計(jì)平均誤差為8.8°,火龍果采摘機(jī)器人在果園環(huán)境下的采摘成功率為86.7%,平均采摘時(shí)間為22.3s。

    Abstract:

    In order to achieve automation of pitaya harvesting, an improved U-Net based method for pitaya image segmentation and pose estimation was proposed. Firstly, a concurrent spatial and channel squeeze and channel exception (SCSE) module was introduced into the skip connection (connection operation between the encoder and decoder feature maps) of the U-Net model. At the same time, the SCSE module was integrated into the residual module double residual block (DRB) to enhance the network’s ability to extract effective features while improving its convergence speed, obtaining a pitaya image segmentation network based on attention residual U-Net. By using this network to segment mask images of fruits and their accompanying branches, image processing techniques and camera imaging models were used to fit the contours, centroids, minimum bounding rectangle boxes, and three-dimensional bounding boxes of fruits and their accompanying branches. Then based on the positional relationship of fruits and their accompanying branches, three-dimensional pose estimation of pitaya was performed. A test set was obtained in pitaya plantations to evaluate the performance of this algorithm. Finally, field picking experiments were conducted in a natural orchard environment. The experimental results showed that the average intersection and union ratio (mIoU) and the mean pixel accuracy (mPA) of image segmentation for pitaya fruit reached 86.69% and 93.89%, respectively. The average error of threedimensional pose estimation was 8.8°. The success rate of pitaya fruit picking robot in orchard environment was 86.7%, and the average picking time was 22.3s. The research results indicated that this method can provide technical support for developing an intelligent pitaya picking robot to achieve automated and precise picking.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱立學(xué),賴穎杰,張世昂,伍榮達(dá),鄧文乾,郭曉耿.基于改進(jìn)U-Net的火龍果采摘圖像分割和姿態(tài)估計(jì)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):180-188. ZHU Lixue, LAI Yingjie, ZHANG Shiang, WU Rongda, DENG Wenqian, GUO Xiaogeng. Image Segmentation and Pose Estimation Method for Pitaya Picking Robot Based on Enhanced U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):180-188.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼