亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)MobileNetV3的水稻病害識(shí)別模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32172780)


Rice Disease Identification Model Based on Improved MobileNetV3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)水稻病害識(shí)別方法準(zhǔn)確度低、模型收斂速度緩慢的問題,本文提出了一種高性能的輕量級(jí)水稻病害識(shí)別模型,簡(jiǎn)稱為CA(Coordinate attention)-MobileNetV3。通過微調(diào)的遷移學(xué)習(xí)策略完善了模型的訓(xùn)練,提升了模型收斂速度。首先創(chuàng)建10個(gè)種類的數(shù)據(jù)集,其中包含9種水稻病害和1種水稻健康葉片。其次使用CA模塊,在通道注意力中嵌入空間坐標(biāo)信息,提高模型的特征提取能力與泛化能力。最后,將改進(jìn)后的MobileNetV3網(wǎng)絡(luò)作為特征提取網(wǎng)絡(luò),并加入SVM多分類器,提高模型精度。實(shí)驗(yàn)結(jié)果表明,在本文構(gòu)建的水稻病害數(shù)據(jù)集上,初始的MobileNetV3識(shí)別準(zhǔn)確率僅為95.78%,F(xiàn)1值為95.36%;加入CA模塊后識(shí)別準(zhǔn)確率和F1值分別提高至96.73%和96.56%;再加入SVM多分類器,通過遷移學(xué)習(xí)后,改進(jìn)模型的識(shí)別準(zhǔn)確率和F1值分別達(dá)到97.12%和97.04%,參數(shù)量和耗時(shí)僅為2.99×106和0.91s,明顯優(yōu)于其他模型。本文提出的CA-MobileNetV3水稻病害識(shí)別模型能夠有效識(shí)別水稻葉部病害,實(shí)現(xiàn)了輕量級(jí)、高性能、易部署的水稻病害分類識(shí)別算法。

    Abstract:

    For the problems of low accuracy of rice disease identification methods and slow convergence of models, a highperformance lightweight rice disease identification model was proposed, referred to as coordinate attention (CA)-MobileNetV3. The training of the model was optimized by fine-tuning the migration learning strategy, and the convergence speed of the model was improved. Firstly, a ten species dataset was created, containing nine rice diseases and healthy rice leaves. Secondly, the CA module was also used to embed spatial coordinate information in the channel attention to improve the feature extraction and generalization ability of the model. In addition, the improved MobileNetV3 network was used as the feature extraction network and the SVM multi-classifier was added to improve the model accuracy. The experimental results showed that on the rice disease dataset constructed, the initial MobileNetV3 recognition accuracy was only 95.78% and the F1 score was 95.36%, and then the recognition accuracy and F1 score were improved to 96.73% and 96.56%, respectively, after adding the CA module, and then the SVM multiclassifier was added, and the recognition accuracy and F1 scores reached 97.12% and 97.04%, respectively, the number of parameters and the time taken were only 2.99×106 and 0.91s, which were significantly better than that of other models. The experimental results showed that the CA-MobileNetV3 rice disease recognition model proposed can effectively recognize rice leaf diseases and achieve a lightweight, high-performance and easy-to-deploy rice disease classification and recognition algorithm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

崔金榮,魏文釗,趙敏.基于改進(jìn)MobileNetV3的水稻病害識(shí)別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):217-224,276. CUI Jinrong, WEI Wenzhao, ZHAO Min. Rice Disease Identification Model Based on Improved MobileNetV3[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):217-224,276.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼