亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

交互式雙分支特征融合的草莓病害程度快速診斷方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFE0125700、2021YFD2000201)


Interactive Bilateral Feature Fusion Network for Real-time Strawberry Disease Diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對現(xiàn)有草莓病害程度診斷方法存在識別精度低、參數(shù)量大、推理時間長等問題,提出了一種基于交互式雙分支特征融合的草莓病害程度快速診斷方法。該方法首先以短程密集連接模塊為基礎(chǔ),構(gòu)建一種輕量化的交互式雙分支特征融合網(wǎng)絡(luò)(Interactive bilateral feature fusion network,IBFFNet),用于提取圖像的語義特征和細節(jié)特征。然后,通過注意力簡化的金字塔池化模塊獲取上下文分支中的多尺度語義特征,利用邊緣增強模塊豐富空間分支中的邊緣細節(jié)特征。最后,融合多尺度語義特征和空間細節(jié)特征,實現(xiàn)病斑和葉片區(qū)域的精確分割。在草莓葉部病害程度數(shù)據(jù)集上的實驗結(jié)果顯示,IBFFNet2_Seg的平均交并比達到77.8%,在單張NVIDIA GTX1050顯卡上處理速度可達40.6f/s,滿足實際應用中對算法實時性和分割精度的要求。此外,在測試集上IBFFNet2_Seg預測病害程度與真實程度的決定系數(shù)R2為0.98,說明該模型可以準確預測草莓病害嚴重程度。本研究可為草莓病害精準防治提供可靠的技術(shù)支撐。

    Abstract:

    Accurately identifying the severity of strawberry leaf disease is essential for precise disease control. However, methods based on image classification had a rough division of disease severity and fuzzy classification boundary, while methods based on semantic segmentation had high computational costs and long inference time. To address these problems, a real-time strawberry disease diagnosis method was proposed based on interactive bilateral feature fusion network (IBFFNet). The IBFFNet was a lightweight model containing a context path and a spatial path to extract semantic and detail features from the input image, respectively. Furthermore, an attention spatial pyramid pooling module was constructed to extract multiscale semantic features from the context path, and an edge enhancement module was designed to enrich edge detail information in the spatial path. Finally, the multiscale semantic feature and detail information were aggregated for precise leaf and lesion area segmentation. The percentage of lesions in the leaf area was the estimated severity. The method achieved a promising trade-off between accuracy and speed on the strawberry leaf disease diagnosis dataset. On the strawberry leaf disease diagnosis dataset, the mIoU of IBFFNet2_Seg was 77.8% with 40.6f/s on a single NVIDIA GTX1050. In the test set, an R2 value (coefficient of determination) of 0.98 was achieved, which denoted that the IBFFNet2_Seg could accurately predict the severity of the three diseases. This study paved the way for the precise control of strawberry disease.

    參考文獻
    相似文獻
    引證文獻
引用本文

胡曉波,許桃勝,黃偉,王儒敬.交互式雙分支特征融合的草莓病害程度快速診斷方法[J].農(nóng)業(yè)機械學報,2023,54(11):225-235. HU Xiaobo, XU Taosheng, HUANG Wei, WANG Rujing. Interactive Bilateral Feature Fusion Network for Real-time Strawberry Disease Diagnosis[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):225-235.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼