亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

詞嵌入BERT-CRF玉米育種實體關(guān)系聯(lián)合抽取方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2020YFD1100601)、陜西省重點研發(fā)計劃項目(2021NY-138)和中央高校基本科研業(yè)務(wù)專項資金項目(2452019064)


Joint Extraction Method of Entity and Relation in Maize Breeding Based on BERT-CRF and Word Embedding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對玉米育種文本數(shù)據(jù)中存在重疊三元組、實體表達(dá)方式多樣等問題,提出一種嵌入詞匯信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育種實體關(guān)系聯(lián)合抽取方法。首先,分析了玉米育種語料表達(dá)特征,采用對實體邊界、關(guān)系類別和實體位置信息同步標(biāo)注的策略;其次,構(gòu)建了嵌入詞匯信息的BERT-CRF模型進行訓(xùn)練和預(yù)測,自建玉米育種知識詞典,通過在BERT中嵌入詞匯信息,融合字符特征和詞匯特征,增強模型的語義能力,利用CRF模型輸出全局最優(yōu)標(biāo)簽序列,設(shè)計了實體關(guān)系三元組匹配算法(Entity and relation triple matching algorithm,ERTM),將標(biāo)簽進行匹配和映射來獲取三元組;最后,為驗證該方法的有效性,在玉米育種數(shù)據(jù)集上進行實驗,結(jié)果表明,本文模型精確率、召回率和F1值分別為91.84%、95.84%、93.80%,與現(xiàn)有模型相比性能均有提升。說明該方法能夠有效抽取玉米育種領(lǐng)域知識,為構(gòu)建玉米育種知識圖譜及其它下游任務(wù)提供數(shù)據(jù)基礎(chǔ)。

    Abstract:

    Aiming at the problems of overlapping triples and diverse entity expressions in maize breeding text data, a joint bidirectional encoder representations from transformers-conditional random field (BERT-CRF) maize breeding entity relation extraction method with embedded lexical information was proposed. Firstly, the expression characteristics of maize breeding corpus were analyzed, and a synchronous labeling strategy for entity boundary, relation type, and entity position information was adopted. Secondly, a BERT-CRF model with embedded lexical information was constructed for training and prediction, a selfbuilt dictionary of maize breeding knowledge was designed to enhance the semantic ability of the model by embedding lexical information in BERT, integrating character features and lexical features, and using CRF model to output the globally optimal label sequence, and an entity and relation triple matching algorithm (ERTM) was designed to obtain triples by mapping and matching labels. Finally, in order to verify the effectiveness of the proposed method, experiments were carried out on maize breeding data set. The results showed that the precision, recall and F1 value were 91.84%, 95.84% and 93.80%, respectively, which improved the performance compared with the existing models. This method can extract maize breeding knowledge effectively and provide data basis for constructing maize breeding knowledge graph and other downstream tasks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李書琴,龐文婷.詞嵌入BERT-CRF玉米育種實體關(guān)系聯(lián)合抽取方法[J].農(nóng)業(yè)機械學(xué)報,2023,54(11):286-294. LI Shuqin, PANG Wenting. Joint Extraction Method of Entity and Relation in Maize Breeding Based on BERT-CRF and Word Embedding[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):286-294.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼