亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于PSO的DSSAT水稻品種參數(shù)優(yōu)化
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

黑龍江省自然科學(xué)基金項(xiàng)目(LH2021E009)


Rice Cultivar Coefficient Optimization of DSSAT Based on PSO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    農(nóng)業(yè)技術(shù)轉(zhuǎn)移決策支持系統(tǒng)(DSSAT)在農(nóng)業(yè)領(lǐng)域的應(yīng)用越來(lái)越廣泛,應(yīng)用DSSAT的首要工作就是估計(jì)作物品種參數(shù)。GLUE參數(shù)估計(jì)器是DSSAT自帶的參數(shù)估計(jì)工具,但GLUE參數(shù)估計(jì)器所估計(jì)的品種參數(shù)并不總有效,其估計(jì)參數(shù)的DSSAT模擬精度往往不高。本文利用4個(gè)品種水稻的田間實(shí)測(cè)產(chǎn)量數(shù)據(jù),采用對(duì)比分析方法,以DSSAT自帶的GLUE參數(shù)估計(jì)器運(yùn)行結(jié)果為參照,將粒子群優(yōu)化(PSO)的每個(gè)粒子視為一組水稻品種參數(shù),在運(yùn)行PSO算法過(guò)程中調(diào)用DSSAT模擬水稻產(chǎn)量,依據(jù)產(chǎn)量模擬誤差和PSO的運(yùn)行機(jī)制修改粒子,從而驗(yàn)證PSO優(yōu)化DSSAT水稻品種參數(shù)的有效性及可行性。研究結(jié)果表明:兩種算法均能較好識(shí)別DSSAT水稻品種參數(shù),但GLUE參數(shù)估計(jì)器估計(jì)參數(shù)無(wú)效的頻次較高;與GLUE參數(shù)估計(jì)器相比,PSO識(shí)別的參數(shù)均為有效參數(shù),其優(yōu)化參數(shù)的DSSAT模擬水稻產(chǎn)量的精度更高,標(biāo)準(zhǔn)化均方根誤差(NRMSE)處于5.98%~8.78%之間,明顯低于GLUE參數(shù)估計(jì)器的6.89%~18.06%,所模擬的水稻產(chǎn)量也更接近于實(shí)測(cè)產(chǎn)量。

    Abstract:

    Decision support system for agrotechnology transfer (DSSAT) is increasingly used in agriculture, and the primary task in the localization of DSSAT is to estimate crop cultivar coefficients. Generalized likelihood uncertainty estimation (GLUE) coefficient estimator is a self-contained coefficient estimation tool for DSSAT, but the crop cultivar coefficients estimated by GLUE coefficient estimator are not always effective, and the simulation accuracy of the DSSAT with the estimated coefficents is often not high. Through using the field measured yield data of four cultivars of rice and the comparative analysis method, with the results of running the GLUE coefficient estimator as a reference, treating each particle of particle swarm optimization (PSO) was considered as a group of rice cultivar coefficients, calling DSSAT to simulate rice yield during the operation of the PSO, and modifying the particles according to the yield simulation error and the operation mechanism of PSO, thus verifying the feasibility of PSO to optimize the coefficients of DSSAT rice cultivar coefficients. The results showed that both algorithms can identify the DSSAT rice cultivar coefficients well, but the GLUE coefficient estimator had a higher frequency of estimating invalid coefficients. Compared with the GLUE coefficient estimator, the coefficients identified by the PSO were all efficient, and the accuracy of its optimized parameters for DSSAT simulated rice yield was higher, and the normalized root mean square error (NRMSE) was in the range of 5.98%~8.78%, which was significantly lower than that of the GLUE coefficient estimator, which was ranged from 6.89% to 18.06%, and the simulated rice yield was close to the measured yield.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王斌,楊宏賢,馮杰,郭中原,郭彥文.基于PSO的DSSAT水稻品種參數(shù)優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):369-375. WANG Bin, YANG Hongxian, FENG Jie, GUO Zhongyuan, GUO Yanwen. Rice Cultivar Coefficient Optimization of DSSAT Based on PSO[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):369-375.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼