亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度強(qiáng)化學(xué)習(xí)的豬舍環(huán)境控制策略優(yōu)化與能耗分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金面上項(xiàng)目(32072787、32372934)、東北農(nóng)業(yè)大學(xué)東農(nóng)學(xué)者計(jì)劃項(xiàng)目(19YJXG02)和黑龍江省博士后項(xiàng)目(LBH-Q21070)


Pig Building Environment Optimization Control and Energy Consumption Analysis Based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在規(guī)?;纳i養(yǎng)殖生產(chǎn)中,環(huán)境質(zhì)量對(duì)于豬群的健康及生長發(fā)育至關(guān)重要。為實(shí)現(xiàn)豬舍環(huán)境精準(zhǔn)調(diào)控,以STM32單片機(jī)為核心,構(gòu)建了基于物聯(lián)網(wǎng)的豬舍環(huán)境智能控制系統(tǒng);同時(shí)提出了基于雙深度Q網(wǎng)絡(luò)(Double deep Q-Network,Double DQN)的豬舍環(huán)境優(yōu)化控制策略。通過在實(shí)際豬舍中運(yùn)行結(jié)果表明,舍內(nèi)平均溫度和相對(duì)濕度可控制在(20.53±1.72)℃和(74.16±7.84)%。與傳統(tǒng)基于溫度閾值的控制策略相比,基于Double DQN控制策略的舍內(nèi)溫度、相對(duì)濕度、NH3濃度和CO2濃度更接近期望值(期望溫度為19℃,相對(duì)濕度為75%,NH3濃度(體積比)為10μL/L,CO2濃度(體積比)為800μL/L),舍內(nèi)溫度和相對(duì)濕度最大相對(duì)誤差分別低于溫度閾值控制策略3.7%和2.5%。此外,該系統(tǒng)傳感器監(jiān)測(cè)數(shù)據(jù)上傳和控制指令下發(fā)的平均延遲時(shí)間分別為226ms和140.4ms,監(jiān)測(cè)與控制延遲較小,穩(wěn)定性較強(qiáng)。在Double DQN控制策略下,一天內(nèi)3臺(tái)風(fēng)機(jī)總運(yùn)行時(shí)長為28.01h,總耗電量為11.4kW·h,相較于傳統(tǒng)溫度閾值法可節(jié)省約7.39%。因此,本文構(gòu)建的融合深度強(qiáng)化學(xué)習(xí)策略的控制系統(tǒng)有助于改善豬舍環(huán)境質(zhì)量,提高養(yǎng)殖環(huán)境的自動(dòng)化及智能化控制水平。

    Abstract:

    In large-scale pig farms, environmental quality is critical for the health and growth of pigs. To achieve optimal and real-time regulation of the pig building environment, an IoT-based pig building environment control system was developed by using an STM32 microcontroller as the core controller. The system included a PC terminal and an APP remote monitoring platform as well as a touch screen on-site monitoring platform, that can realize real-time control of pig building environment. Meanwhile, an optimal control strategy for pig building environment based on double deep Q-Network (Double DQN) was proposed. It was shown that the average temperature and relative humidity could be controlled at (20.53±1.72)℃ and (74.16±7.84)%. Compared with the control strategy on a single parameter of temperature, the temperature, relative humidity, NH3 concentration, and CO2 concentration in the pig building under the control of Double DQN were closer to the expected value (temperature was 19℃, relative humidity was 75%, NH3 concentration was 10μL/L, and CO2 concentration was 800μL/L). The maximum relative error of indoor temperature and relative humidity under the Double DQN control strategy were 3.7% and 2.5% lower than that under the temperature threshold control strategy, respectively. Furthermore, the average delay of sensor data upload and control instruction delivery were 226ms and 140.4ms, respectively, which achieved the control ability of small monitoring and control delay and high stability. Under the Double DQN control strategy, the total operation time of three fans in one day was 28.01h, and the total power consumption was 11.4kW·h, which could save about 7.39% of the power consumption compared with that of the traditional temperature threshold method. Therefore, the proposed IoT-based control system integrated with deep reinforcement learning strategy was helpful to improve the environmental quality of pig building and improve the level of automation and intelligent control of breeding environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

謝秋菊,王圣超,MUSABIMANA J,郭玉環(huán),劉洪貴,包軍.基于深度強(qiáng)化學(xué)習(xí)的豬舍環(huán)境控制策略優(yōu)化與能耗分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(11):376-384,430. XIE Qiuju, WANG Shengchao, MUSABIMANA J, GUO Yuhuan, LIU Honggui, BAO Jun. Pig Building Environment Optimization Control and Energy Consumption Analysis Based on Deep Reinforcement Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(11):376-384,430.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-10
  • 出版日期:
文章二維碼