亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

棉稈粉碎刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

新疆農(nóng)機(jī)研發(fā)制造推廣應(yīng)用一體化項(xiàng)目(YTHSD2022-09)和新疆維吾爾自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022B02022-3)


Design and Experiment of Wear Status Monitoring System for Cotton Straw Crushing Tool
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)棉稈粉碎還田過(guò)程中刀具磨損嚴(yán)重且缺少故障監(jiān)測(cè)裝置導(dǎo)致工作失效的問(wèn)題,設(shè)計(jì)了一種搭載在棉稈粉碎還田機(jī)上的智能監(jiān)測(cè)系統(tǒng)。系統(tǒng)以STM32單片機(jī)為主控制器,應(yīng)用多種傳感器融合技術(shù),基于機(jī)器學(xué)習(xí)算法實(shí)現(xiàn)刀具磨損狀態(tài)監(jiān)測(cè)。為了解決棉稈粉碎刀具磨損非線性特征信號(hào)難以提取的問(wèn)題,提出了一種融合改進(jìn)蝴蝶優(yōu)化算法(IBOA)和支持向量機(jī)(SVM)的刀具磨損狀態(tài)監(jiān)測(cè)方法(IBOA-SVM)。該監(jiān)測(cè)方法以粉碎刀輥轉(zhuǎn)速、左側(cè)振動(dòng)頻率、右側(cè)振動(dòng)頻率作為模型輸入特征向量,將刀具磨損狀態(tài)(正常狀態(tài)、磨損狀態(tài)、丟刀狀態(tài))作為輸出。相較于未優(yōu)化的SVM算法,通過(guò)IBOA算法優(yōu)化SVM算法的參數(shù),刀具磨損狀態(tài)的識(shí)別準(zhǔn)確率由95.61%提高至98.83%。為驗(yàn)證IBOA-SVM模型的有效性,在相同參數(shù)設(shè)置環(huán)境下進(jìn)行多種模型的重復(fù)對(duì)比試驗(yàn),試驗(yàn)結(jié)果表明:相較于SVM、PSO-SVM、WOA-SVM、BOA-SVM和CWBOA-SVM 5種模型,IBOA-SVM模型識(shí)別準(zhǔn)確率平均值有所提升,單次試驗(yàn)的準(zhǔn)確率均維持在較高的水平。將IBOA-SVM模型嵌入到監(jiān)測(cè)系統(tǒng),并進(jìn)行田間驗(yàn)證試驗(yàn),試驗(yàn)結(jié)果表明設(shè)計(jì)的刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)在識(shí)別準(zhǔn)確率和魯棒性方面都具有良好的性能。

    Abstract:

    With the problems of severe tool wear and lack of fault monitoring device, leading to the failure of the work during the working process of stalk chopping, an intelligent monitor system which can be mounted on the returning stalk chopping machine was designed. Taking STM32 microcontroller as the main controller, multiple sensors fusion technology was applied, and tool wear condition monitoring was realized based on machine learning algorithm. In order to solve the problem of difficult extraction of nonlinear feature signals of straw crushing tool wear, a method of tool wear monitoring IBOA-SVM integrating improve butterfly optimization algorithm (IBOA) and support vector machine (SVM) was proposed. The monitoring method used the rotational speed, left side vibration frequency, and right side vibration frequency of the crushing knife roll as input eigenvectors to the model, and the wear condition of the tool (normal, worn and lost) as outputs. Compared with the unoptimized SVM algorithm, the identification accuracy of tool wear condition was improved from 95.61% to 98.83% by optimizing the parameters of the SVM algorithm with the IBOA algorithm. In order to verify the effectiveness of the IBOA-SVM model, the repeated comparison experiments of multiple models were conducted under the same parameter setting environment, which showed that the average value of the recognition accuracy of the IBOA-SVM model was improved and the accuracy of a single trial was maintained at a high level as compared with the five models of SVM, PSO-SVM, WOA-SVM, BOA-SVM and CWBOA-SVM. The IBOA-SVM model was embedded into the monitoring system and field test was conducted, in which it was shown that the designed tool wear condition monitoring system had good performance both in terms of recognition accuracy and robustness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

謝建華,周通,王長(zhǎng)云,劉旋峰,蔣永新,張海春.棉稈粉碎刀具磨損狀態(tài)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):155-165. XIE Jianhua, ZHOU Tong, WANG Changyun, LIU Xuanfeng, JIANG Yongxin, ZHANG Haichun. Design and Experiment of Wear Status Monitoring System for Cotton Straw Crushing Tool[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):155-165.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-22
  • 出版日期:
文章二維碼