亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LightGBM的冬小麥產(chǎn)量估測與可解釋性研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(42171332)


Interpretability on Yield Estimation of Winter Wheat Based on LightGBM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    機器學(xué)習(xí)模型在作物長勢監(jiān)測和產(chǎn)量估測過程中,復(fù)雜模型的內(nèi)部機制難以理解,為了在準(zhǔn)確估測作物產(chǎn)量的同時給出合理解釋,本文選取條件植被溫度指數(shù)(VTCI)以及冬小麥產(chǎn)量數(shù)據(jù),基于輕量級梯度提升機(LightGBM)開展關(guān)中平原冬小麥的產(chǎn)量估測研究,并將局部可解釋性模型無關(guān)方法(LIME)、部分依賴圖(PDP)和個體條件期望圖(ICE)等全局和局部可解釋性方法用于對模型估測結(jié)果的進(jìn)一步解釋。結(jié)果表明,與其他機器學(xué)習(xí)方法相比,經(jīng)過網(wǎng)格搜索優(yōu)化的LightGBM能夠準(zhǔn)確地估測冬小麥產(chǎn)量,估測單產(chǎn)與實測單產(chǎn)的決定系數(shù)R2達(dá)到0.32,均方根誤差(RMSE)為809.10kg/hm2,平均相對誤差(MRE)為16.55%,達(dá)到極顯著水平(P<0.01),表明該模型有較高的預(yù)測精度和泛化能力。進(jìn)一步可解釋性實驗表明,網(wǎng)格搜索優(yōu)化的LightGBM能夠準(zhǔn)確提取數(shù)據(jù)蘊含的信息,從全局角度來看,冬小麥4個生育期中拔節(jié)期VTCI對產(chǎn)量形成最為重要,抽穗-灌漿期和乳熟期次之,返青期則影響最小,這與先驗知識相符合;從局部角度來看,局部可解釋性方法基于冬小麥產(chǎn)量西高東低的空間特征能夠進(jìn)一步提供不同縣(區(qū))產(chǎn)量存在差異的原因,為關(guān)中平原的田間管理提供參考,對冬小麥的穩(wěn)產(chǎn)增產(chǎn)具有應(yīng)用價值。

    Abstract:

    Machine learning models have been applied for monitoring crop growth condition and estimating crop yield, it is difficult to understand the internal mechanisms of complex models. In order to estimate crop yields accurately and make understandable explanations at the same time, LightGBM was used to develop yield estimation models of winter wheat in the Guanzhong Plain, PR China by using vegetation temperature condition index (VTCI), and interpretable methods such as local interpretable model-agnostic explanation (LIME), submodular pick-LIME, partial dependence plot (PDP), and individual conditional expectation (ICE) at global and local scales were used for further interpretations of the yield estimation models. Compared with other models, the results of LightGBM optimized by grid search showed that the R2 between the estimated and official yield records of winter wheat was 0.32, the RMSE was 809.10kg/hm2, and the MRE was 16.55%, which reached the extremely significant level (P<0.01), indicating that the model had high prediction precision and strong generalization ability. The interpretability of the experiments showed that the model can extract the knowledge in the data. In global interpretation, VTCI at the jointing stage for yield formation was the most important, followed by VTCI at the heading to filling stage and VTCI at the dough stage, and VTCI at the turning green stage had the least effect, which were consistent with prior knowledge. In local interpretation, based on the spatial characteristics of winter wheat yield that was high in the west and low in the east, the local interpretable methods further provided the reasons for the differences in the yield formation of different counties (districts), which provided references for field management in the Guanzhong Plain, PR China. These methods had application value for increasing and stabilizing the yield of winter wheat.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王鵬新,王穎,田惠仁,王婕,劉峻明,權(quán)文婷.基于LightGBM的冬小麥產(chǎn)量估測與可解釋性研究[J].農(nóng)業(yè)機械學(xué)報,2023,54(12):197-206. WANG Pengxin, WANG Ying, TIAN Huiren, WANG Jie, LIU Junming, QUAN Wenting. Interpretability on Yield Estimation of Winter Wheat Based on LightGBM[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):197-206.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-02-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-03-05
  • 出版日期:
文章二維碼