亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多物候特征指數(shù)的冬小麥分布信息提取
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(42101382)、河南省科技攻關(guān)項(xiàng)目(222102110038、232102210093)、河南省博士后基金項(xiàng)目(202103072)、河南理工大學(xué)博士基金項(xiàng)目(B2021-19)和河南理工大學(xué)測(cè)繪科學(xué)與技術(shù)“雙一流”學(xué)科創(chuàng)建項(xiàng)目(JXSFZXKFJJ202308、JXSFZXKFJJ202305)


Extraction of Winter Wheat Distribution Information Based on Multi-phenological Feature Indices Derived from Sentinel-2 Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以往的冬小麥分布信息提取研究大多基于單個(gè)物候期或單個(gè)植被指數(shù),未考慮不同物候期特征及不同物候期之間的聯(lián)系導(dǎo)致分類(lèi)精度較低。為提高提取精度,本文基于冬小麥播種期、越冬期、生長(zhǎng)期及成熟期選取相應(yīng)特征指數(shù),提出一種多物候特征指數(shù)的冬小麥識(shí)別方法,并對(duì)2020年焦作市的冬小麥面積進(jìn)行提取。通過(guò)對(duì)不同物候期、不同分類(lèi)方法下的結(jié)果進(jìn)行對(duì)比,結(jié)果表明:在物候期的選擇上,加入越冬期后,隨機(jī)森林與支持向量機(jī)分類(lèi)的總體精度與Kappa系數(shù)呈現(xiàn)不同程度的提升,均方根誤差(RMSE)分別減小19.3%和9.8%,提取冬小麥面積的誤差百分比分別降低8.64、4.42個(gè)百分點(diǎn)。在不同分類(lèi)方法上,隨機(jī)森林相較于支持向量機(jī)、最小距離,分類(lèi)的總體精度與Kappa系數(shù)更高。相較于支持向量機(jī),隨機(jī)森林分類(lèi)的RMSE減小19.6%。相較于單一特征指數(shù),基于隨機(jī)森林的多物候特征指數(shù)分類(lèi)的總體精度,Kappa系數(shù)更高,RMSE為1.84×103hm2,比單一特征指數(shù)減小33.6%,提取冬小麥面積的誤差百分比減小7.14個(gè)百分點(diǎn)。

    Abstract:

    Previous research on the extraction of winter wheat distribution information has mostly relied on single phenological periods or individual vegetation indices, neglecting the characteristics of different phenological periods and their interconnections, which has limited the classification accuracy. To enhance the extraction accuracy, a method for winter wheat identification was proposed based on corresponding feature indices for the sowing period, overwintering period, growth period, and maturation period. The method was applied to extract the winter wheat area in Jiaozuo City in 2020. By comparing the results under different phenological periods and classification methods, the findings indicated that the inclusion of the overwintering period led to varying degrees of improvement in overall accuracy and Kappa coefficients for both random forest and support vector machine classification methods, with respective reductions in root mean square error (RMSE) by 19.3% and 9.8%. The error percentage in winter wheat area extraction was reduced by 8.64 percentage points and 4.42 percentage points, respectively. Among different classification methods, random forest outperforms support vector machine and minimum distance in terms of overall accuracy and Kappa coefficient. Compared with support vector machine, random forest classification reduced RMSE by 19.6%. When compared with single feature indices, the overall accuracy and Kappa coefficient of the multi-phenological feature index based on random forest were higher, with RMSE of 1.84×103hm2, representing 33.6% reduction compared with single feature indices and 7.14 percentage points decrease in the error percentage for winter wheat area extraction.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳喜芳,化仕浩,張莎,谷玲霄,馬春艷,李長(zhǎng)春.基于多物候特征指數(shù)的冬小麥分布信息提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):207-216. WU Xifang, HUA Shihao, ZHANG Sha, GU Lingxiao, MA Chunyan, LI Changchun. Extraction of Winter Wheat Distribution Information Based on Multi-phenological Feature Indices Derived from Sentinel-2 Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):207-216.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-25
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2023-10-08
  • 出版日期:
文章二維碼