亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

無人機(jī)多光譜數(shù)據(jù)可靠性分析與冬小麥產(chǎn)量估算研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503124)


Reliability Analysis of UAV Multispectral Data and Estimation of Winter Wheat Yield
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    無人機(jī)多光譜遙感用于冬小麥產(chǎn)量預(yù)測中捕獲的數(shù)據(jù)準(zhǔn)確性不高,為指導(dǎo)田塊尺度下冬小麥產(chǎn)量的精準(zhǔn)預(yù)測,需構(gòu)建高精度的冬小麥產(chǎn)量估算模型。本研究利用校正后的近地面高光譜數(shù)據(jù)(Field-Spec 3型野外光譜儀獲?。?yàn)證低空無人機(jī)多光譜遙感數(shù)據(jù)(大疆精靈4型多光譜相機(jī)獲?。?,將通過無人機(jī)多光譜影像計(jì)算的植被指數(shù)與經(jīng)驗(yàn)統(tǒng)計(jì)方法結(jié)合,采用一元回歸和多元線性回歸分別對抽穗期、開花期和灌漿期冬小麥進(jìn)行基于單一植被指數(shù)和多植被指數(shù)組合的產(chǎn)量估算,其中多植被指數(shù)包括歸一化差異植被指數(shù)(NDVI)、優(yōu)化的土壤調(diào)節(jié)植被指數(shù)(OSAVI)、綠色歸一化差值植被指數(shù)(GNDVI)、葉片葉綠素指數(shù)(LCI)和歸一化差異紅色邊緣指數(shù)(NDRE)。結(jié)果表明,基于單一植被指數(shù)的冬小麥估產(chǎn)模型,一元二次回歸模型精度最高,而基于5種植被指數(shù)的多元線性回歸模型在3個(gè)生育時(shí)期的擬合效果均優(yōu)于單植被指數(shù)模型。一元或多元回歸模型在抽穗期的擬合效果最好。冬小麥基于GNDVI指數(shù)的一元二次回歸估產(chǎn)模型建模集的決定系數(shù)(R2)、均方根誤差(RMSE)分別為0.69、428.91kg/hm2,驗(yàn)證集的R2、RMSE、相對均方根誤差(RRMSE)分別為0.76、418.14kg/hm2、11.56%?;?種植被指數(shù)組合的多元線性回歸估產(chǎn)模型建模集的R2、RMSE分別為0.80、340.14kg/hm2,驗(yàn)證集的R2、RMSE、RRMSE分別為0.69、466.75kg/hm2、12.90%。綜上所述,大疆精靈4型多光譜相機(jī)捕獲的數(shù)據(jù)在估算冬小麥產(chǎn)量方面具有廣闊的應(yīng)用前景;冬小麥產(chǎn)量估算的最適模型為基于抽穗期多植被指數(shù)組合建立的多元線性回歸模型。

    Abstract:

    The accuracy of the data captured by UAV multispectral remote sensing for winter wheat yield prediction is still not high, and in order to guide the accurate prediction of winter wheat yield at the field scale, a high-precision winter wheat yield estimation model needs to be constructed. The corrected near-ground hyperspectral data (acquired by Field-Spec 3 analytical spectral devices, ASD) was used to verify the low-altitude UAV multispectral remote sensing data (acquired by DJI Phantom 4 multispectral camera, P4M), and the vegetation index calculated by the UAV multispectral image was combined with empirical statistical methods, and unvariate regression and multiple linear regression were used to estimate yields based on a single vegetation index and the combination of multi-vegetation index at the panicle stage, flowering stage and filling stage, respectively. Among them, the combination of multi-vegetation index included the normalized difference vegetation index (NDVI), the optimized soil adjusted vegetation index (OSAVI), the green normalized difference vegetation index (GNDVI), the leaf chlorophyll index (LCI) and the normalized difference red edge index (NDRE). The results showed that the winter wheat yield estimation model based on a single vegetation index had the highest accuracy, while the multiple linear regression model based on five vegetation indices had better fitting effect than the single vegetation index model in the three growth periods. Univariate or multiple regression models fit best during the spike extraction period. The coefficients of determination (R2), root mean square error (RMSE) of the modeling set of winter wheat based on the GNDVI index of the univariate quadratic regression yield estimation model were 0.69 and 428.91kg/hm2, respectively, and the R2, RMSE and relative root mean square error (RRMSE) of the validation set were 0.76, 418.14kg/hm2 and 11.56%, respectively. The R2 , RMSE and RRMSE of modeling set of the multiple linear regression yield estimation model based on the combination of five vegetation indices were 0.80, 340.14kg/hm2, and the R2, RMSE and RRMSE of the validation set were 0.69, 466.75kg/hm2 and 12.90%, respectively. In summary, the data captured by the P4M had broad application prospects in estimating winter wheat yield. The optimal model for winter wheat yield estimation was a multiple linear regression model based on the combination of multiple vegetation indices at the ear pumping stage.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡田田,趙璐,崔曉路,張俊,李澳旗,王小昌.無人機(jī)多光譜數(shù)據(jù)可靠性分析與冬小麥產(chǎn)量估算研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):217-225. HU Tiantian, ZHAO Lu, CUI Xiaolu, ZHANG Jun, LI Aoqi, WANG Xiaochang. Reliability Analysis of UAV Multispectral Data and Estimation of Winter Wheat Yield[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):217-225.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-20
  • 出版日期:
文章二維碼