亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于融合GhostNetV2的YOLO v7水稻籽粒檢測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52275251)


Rice Grain Detection Based on YOLO v7 Fusing of GhostNetV2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    水稻籽粒檢測(cè)在糧食儲(chǔ)存中凸顯重要作用,直接影響糧食銷售的價(jià)格。針對(duì)一般機(jī)器視覺(jué)檢測(cè)算法在水稻籽粒小目標(biāo)的密集場(chǎng)景下存在難以識(shí)別且網(wǎng)絡(luò)模型參數(shù)大,檢測(cè)速度較慢、成本高等問(wèn)題,提出一種基于YOLO v7優(yōu)化的水稻籽粒檢測(cè)算法。首先將部分高效聚合網(wǎng)絡(luò)模塊(Efficient layer aggregation network,ELAN)替換成輕量級(jí)網(wǎng)絡(luò)模塊GhostNetV2添加到主干及頸部網(wǎng)絡(luò)部分,實(shí)現(xiàn)網(wǎng)絡(luò)參數(shù)精簡(jiǎn)化的同時(shí)也減少了通道中的特征冗余;其次將卷積和自注意力結(jié)合的注意力模塊(Convolution and self-attention mixed model,ACmix)添加到MP模塊中,平衡全局和局部的特征信息,充分關(guān)注特征映射的細(xì)節(jié)信息;最后使用WIoU(Wise intersection over union)作為損失函數(shù),減少了距離、縱橫比之類的懲罰項(xiàng)干擾,單調(diào)聚焦機(jī)制的設(shè)計(jì)提高了模型的定位性能。在水稻籽粒圖像數(shù)據(jù)集上驗(yàn)證改進(jìn)后的模型檢測(cè)水平,實(shí)驗(yàn)結(jié)果表明,改進(jìn)后的YOLO v7模型的mAP@0.5達(dá)96.55%,mAP@0.5:0.95達(dá)70.10%,訓(xùn)練模型參數(shù)量也有所下降,在實(shí)際場(chǎng)景以暗黑色為背景的水稻雜質(zhì)檢測(cè)中的效果優(yōu)于其他模型,滿足了水稻籽粒的實(shí)時(shí)檢測(cè)要求,可將此算法應(yīng)用于自動(dòng)化檢測(cè)糧食系統(tǒng)中。

    Abstract:

    Rice grain detection plays an important role in grain storage, directly affecting the price of grain sales. In response to the problems of difficult recognition, large network model parameters, slow detection speed, and high cost of general machine vision detection algorithms in dense scenes with small rice grain targets, a rice grain detection algorithm was proposed based on YOLO v7 optimization. Firstly, some efficient layer aggregation network (ELAN) modules were replaced with lightweight network module GhostNetV2 and added them to the backbone and neck network sections, achieving precise simplification of network parameters while reducing feature redundancy in channels. Secondly, the attention module (ACmix) that combined convolution and self attention was added to the MP module, balancing global and local feature information and fully paying attention to the details of feature mapping. Finally, wise intersection over union (WIoU) was used as the loss function to reduce penalty term interference such as distance and aspect ratio. The design of monotonic focusing mechanism improved the positioning performance of the model. The improved model detection level was verified on the rice grain image dataset, and the experimental results showed that the improved YOLO v7 model was high, mAP@0.5 was up to 96.55%, mAP@0.5:0.95 reached 70.10%, and the training model parameters were also decreased. In practical scenarios, the effect of rice impurity detection with a dark black background was better than other models, meeting the real-time detection requirements of rice grains. This algorithm can be considered for application in automated grain detection systems.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉慶華,楊欣儀,接浩,孫世誠(chéng),梁振偉.基于融合GhostNetV2的YOLO v7水稻籽粒檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(12):253-260,299. LIU Qinghua, YANG Xinyi, JIE Hao, SUN Shicheng, LIANG Zhenwei. Rice Grain Detection Based on YOLO v7 Fusing of GhostNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(12):253-260,299.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-21
  • 出版日期:
文章二維碼