亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于蝙蝠優(yōu)化BP-PID算法的精準(zhǔn)施肥控制系統(tǒng)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家科技創(chuàng)新2030-“新一代人工智能”重大項(xiàng)目(2022ZD0115804)、國家自然科學(xué)基金項(xiàng)目(52065055)、新疆維吾爾自治區(qū)重大科技專項(xiàng)(2022A02012-4)和兵團(tuán)科技合作計(jì)劃項(xiàng)目(2022BC004)


Precision Fertilizer Application Control System Based on BA Optimization BP-PID Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水肥一體化技術(shù)在棉花、小麥、番茄等大田農(nóng)作物種植場景中的應(yīng)用逐漸增多。當(dāng)前能夠快速有效調(diào)整大田農(nóng)作物水肥一體化系統(tǒng)中肥料流量的控制算法研究較為有限。由于水肥一體化系統(tǒng)存在時變性、滯后性與非線性的特點(diǎn),常見的PID與BP-PID控制算法無法獲得預(yù)期的控制效果。為此設(shè)計(jì)一種基于蝙蝠算法(BA)優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)PID控制器。通過采用BA對BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值進(jìn)行優(yōu)化,加快了BP神經(jīng)網(wǎng)絡(luò)的自學(xué)習(xí)速度,實(shí)現(xiàn)對水肥一體化系統(tǒng)中肥料流量的快速精準(zhǔn)控制,從而降低了超調(diào)量、提高了響應(yīng)速度。同時,基于STM32單片機(jī)搭建了水肥一體化流量調(diào)節(jié)測試平臺,并對該控制器的性能進(jìn)行了試驗(yàn)驗(yàn)證。結(jié)果表明,與常規(guī)PID控制器和基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器相比,所設(shè)計(jì)的控制器具有較高的控制精度和魯棒性,降低了由時滯性、非線性等因素引起的影響。平均最大超調(diào)量為4.78%,平均調(diào)節(jié)時間為41.24s。特別是在施肥流量為0.6m3/h時,控制器表現(xiàn)出最佳的綜合控制性能,達(dá)到了精準(zhǔn)施肥的效果。

    Abstract:

    The application of water-fertilizer integration technology in cotton, wheat, tomato and other field crops planting scenarios is gradually increasing. However, the current research on control algorithms that can quickly and effectively adjust the fertilizer flow in the water-fertilizer integration system for field crops is relatively limited. The water-fertilizer integration system has the characteristics of time-varying, hysteresis and nonlinearity, and the common PID and BP-PID control algorithms cannot obtain the expected control effect. To solve these problems, a BP neural network PID controller based on bat algorithm (BA) optimization was designed. By using BA to optimize the initial weights of the BP neural network, the self-learning speed of the BP neural network was accelerated to achieve fast and accurate control of the fertilizer flow rate in the water-fertilizer integration system, which reduced the amount of overshooting and improved the response speed. At the same time, a water-fertilizer integration flow regulation test platform was built based on STM32 microcontroller, and the performance of the controller was experimentally verified. The results showed that compared with the conventional PID controller and the BP neural network-based PID controller, the designed controller had higher control accuracy and robustness, and reduced the effects caused by time lag, nonlinearity and other factors. The average maximum overshoot was 4.78% and the average regulation time was 41.24s. Especially when the fertilizer application flow rate was 0.6m3/h, the controller showed the best comprehensive control performance and achieved the effect of precise fertilizer application.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱鳳磊,張立新,胡雪,趙家偉,張雄業(yè).基于蝙蝠優(yōu)化BP-PID算法的精準(zhǔn)施肥控制系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(s1):135-143,171. ZHU Fenglei, ZHANG Lixin, HU Xue, ZHAO Jiawei, ZHANG Xiongye. Precision Fertilizer Application Control System Based on BA Optimization BP-PID Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(s1):135-143,171.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-10
  • 出版日期:
文章二維碼