亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于有機質特征譜段的土壤Cd含量高光譜遙感反演
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(42371360)和中國科學院戰(zhàn)略性先導科技專項(XDA28080500)


Soil Cd Content Retrieval from Hyperspectral Remote Sensing Data Based on Organic Matter Characteristic Spectral Bands
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對土壤Cd高光譜遙感定量反演中的機理性不足及數(shù)據(jù)冗余問題,提出一種基于有機質特征譜段的反演方法。該方法首先提取土壤光譜中對重金屬Cd具有吸附作用的有機質特征譜段,進而通過競爭性自適應重加權采樣法(Competitive adaptive reweighted sampling,CARS)優(yōu)選特征譜段,采用偏最小二乘回歸法(Partial least squares regression,PLSR)建立重金屬Cd的反演模型,并利用郴州礦區(qū)土壤實驗室光譜數(shù)據(jù)和哈密黃山南礦區(qū)野外光譜數(shù)據(jù)進行方法驗證。研究表明:有機質特征譜段提取在降低數(shù)據(jù)冗余的同時提高了重金屬Cd的反演精度,CARS算法相對于相關系數(shù)法(Correlation coefficient,CC)和遺傳算法(Genetic algorithm,GA)特征選擇具有更高的反演精度,基于有機質特征譜段的CARS-PLSR算法在土壤實驗室光譜和野外實測光譜所得驗證精度R2分別為0.94和0.80,表明該算法對于實驗室和野外光譜均具有一定適用性。研究可為土壤重金屬含量高光譜反演的特征波段選擇和算法優(yōu)選提供參考。

    Abstract:

    To address the mechanistic limitations and data redundancy issues in the quantitative retrieval of soil Cd using hyperspectral remote sensing, an inversion method was proposed based on organic matter characteristic spectral bands. The method involved the extraction of characteristic spectral bands of organic matter with adsorption effects on heavy metal Cd in soil spectra. Subsequently, competitive adaptive reweighted sampling (CARS) was employed to optimize the selected spectral bands, and a partial least squares regression (PLSR) model was developed for the inversion of heavy metal Cd. The proposed method was validated by using laboratory spectral data from the Chenzhou mine and field spectral data from the Hami Huangshan South mine. The results demonstrated that the extraction of organic matter characteristic spectral bands not only reduced data redundancy but also significantly improved the accuracy of Cd inversion. In comparison to the correlation coefficient (CC) and genetic algorithm (GA) methods, the CARS algorithm exhibited superior performance in feature selection and inversion accuracy. The validation accuracies, expressed as R2, were 0.94 for the Chenzhou laboratory spectral data and 0.80 for the Hami field spectral data, indicating the robustness of the CARS-PLSR algorithm for both laboratory and field spectra. The findings can provide valuable references for feature band selection and algorithm optimization in the hyperspectral estimation of soil heavy metal content. The proposed method effectively addressed the limitations of existing approaches by leveraging the unique spectral characteristics of organic matter in soil.

    參考文獻
    相似文獻
    引證文獻
引用本文

張霞,孫友鑫,尚坤,丁松滔,孫偉超.基于有機質特征譜段的土壤Cd含量高光譜遙感反演[J].農業(yè)機械學報,2024,55(1):186-195. ZHANG Xia, SUN Youxin, SHANG Kun, DING Songtao, SUN Weichao. Soil Cd Content Retrieval from Hyperspectral Remote Sensing Data Based on Organic Matter Characteristic Spectral Bands[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):186-195.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-03
  • 出版日期: