亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

設(shè)施生菜光合和蒸騰速率影響因素分析與預(yù)測模型構(gòu)建
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

科技部中央引導(dǎo)地方項(xiàng)目(XZ202202YD0002C)


Analysis and Model Construction of Factors Affecting Photosynthesis and Transpiration Rates in Facility Lettuce
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    光合速率及蒸騰速率是植物的2個(gè)重要生理指標(biāo)。在全人工環(huán)境下,選取意大利生菜作為對象,設(shè)計(jì)并開展多環(huán)境變量對生菜光合速率及蒸騰速率影響的嵌套實(shí)驗(yàn),得到環(huán)境因子對生菜光合速率及蒸騰速率的影響規(guī)律,應(yīng)用神經(jīng)網(wǎng)絡(luò)構(gòu)建生菜幼苗期光合速率及蒸騰速率預(yù)測模型。針對幼苗期生菜,選擇溫度、相對濕度、光子通量密度(Photosynthetic photon flux density, PPFD)及CO2濃度共4個(gè)環(huán)境影響因素,采用隨機(jī)森林方法對數(shù)據(jù)進(jìn)行相關(guān)性分析。結(jié)果表明,與蒸騰速率相關(guān)性由大到小的因素依次為CO2濃度、溫度、相對濕度、PPFD,與光合速率相關(guān)性由大到小的因素依次為CO2濃度、PPFD、溫度、相對濕度;采用枚舉法確定隱藏層節(jié)點(diǎn)數(shù)和訓(xùn)練函數(shù),通過遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的初始權(quán)值和閾值,構(gòu)建GA-BP神經(jīng)網(wǎng)絡(luò)生理指標(biāo)預(yù)測模型。應(yīng)用測試數(shù)據(jù)對模型進(jìn)行驗(yàn)證,光合速率及蒸騰速率預(yù)測值與實(shí)測值的決定系數(shù)分別為0.96212、0.97944,均方根誤差(RMSE)分別為2.9832μmol/(m2·s)、0.0014358mol/(m2·s),表明GA-BP神經(jīng)網(wǎng)絡(luò)在模型精度和迭代次數(shù)方面性能顯著提高。研究結(jié)果可為設(shè)施生菜生產(chǎn)環(huán)境調(diào)控提供有效依據(jù)。

    Abstract:

    Photosynthesis rate and transpiration rate are crucial physiological indicators in plants. In a controlled artificial environment, Italian lettuce was chosen as the research subject. A nested experiment was conducted to investigate the multivariate impact on the photosynthesis rate and transpiration rate of lettuce. The study unveiled patterns of environmental factors affecting these rates, leading to the construction of a neural network prediction model for photosynthesis rate and transpiration rate during the seedling phase of lettuce. For lettuce seedlings, four factors were selected: temperature, relative humidity, photosynthetic photon flux density (PPFD), and environmental CO2 concentration. Using the random forest method, a correlation analysis of the data was carried out. The results revealed that factors strongly correlated with the transpiration rate, in descending order, were CO2 concentration, temperature, relative humidity, and PPFD. Meanwhile, for the photosynthesis rate, the factors were CO2 concentration, PPFD, temperature, and relative humidity. A GA-BP neural network physiological indicator prediction model was developed, employing the enumeration method to determine the number of hidden layer nodes and training functions, and optimizing the initial weights and thresholds of the BP neural network through a genetic algorithm. Testing with actual data, the determination coefficients of predicted and actual values for photosynthesis rate and transpiration rate were 0.96212 and 0.97944, respectively, with root mean square errors (RMSE) of 2.9832μmol/(m2·s) and 0.0014358mol/(m2·s). This demonstrated the significantly improved performance of the GA-BP neural network in terms of model accuracy and iteration times. In summary, the research result can provide a valuable basis for environmental regulation in facility lettuce production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張?jiān)隽?楊杰,郭常江,韓文霆,楊振超.設(shè)施生菜光合和蒸騰速率影響因素分析與預(yù)測模型構(gòu)建[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(1):339-349. ZHANG Zenglin, YANG Jie, GUO Changjiang, HAN Wenting, YANG Zhenchao. Analysis and Model Construction of Factors Affecting Photosynthesis and Transpiration Rates in Facility Lettuce[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):339-349.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-27
  • 出版日期: