亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進Faster R-CNN的馬鈴薯發(fā)芽與表面損傷檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家馬鈴薯產(chǎn)業(yè)技術(shù)體系項目(CARS-10-P28)、國有資本金項目(GZ202007)和農(nóng)業(yè)農(nóng)村部農(nóng)產(chǎn)品產(chǎn)地初加工重點實驗室開放項目(KLAPPP2022-01)


Potato Sprouting and Surface Damage Detection Method Based on Improved Faster R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    發(fā)芽與表面損傷檢測是鮮食馬鈴薯商品化的重要環(huán)節(jié)。針對鮮食馬鈴薯高通量分級分選過程中,高像素圖像目標識別準確率低的問題,提出一種基于改進Faster R-CNN的商品馬鈴薯發(fā)芽與表面損傷檢測方法。以Faster R-CNN為基礎網(wǎng)絡,將Faster R-CNN中的特征提取網(wǎng)絡替換為殘差網(wǎng)絡ResNet50,設計了一種融合ResNet50的特征圖金字塔網(wǎng)絡(FPN),增加神經(jīng)網(wǎng)絡深度。采用模型對比試驗、消融試驗對本文模型與改進策略的有效性進行了試驗驗證分析,結(jié)果表明:改進模型的馬鈴薯檢測平均精確率為98.89%,馬鈴薯發(fā)芽檢測平均精確率為97.52%,馬鈴薯表面損傷檢測平均精確率為92.94%,與Faster R-CNN模型相比,改進模型在檢測識別時間和內(nèi)存占用量不增加的前提下,馬鈴薯檢測精確率下降0.04個百分點,馬鈴薯發(fā)芽檢測平均精確率提升7.79個百分點,馬鈴薯表面損傷檢測平均精確率提升34.54個百分點。改進后的模型可以實現(xiàn)對在高分辨率工業(yè)相機采集高像素圖像條件下,商品馬鈴薯發(fā)芽與表面損傷的準確識別,為商品馬鈴薯快速分級分等工業(yè)化生產(chǎn)提供了方法支撐。

    Abstract:

    Germination and surface damage detection are crucial steps in the commercialization of fresh table potatoes. To address the low accuracy rate of high-pixel image object recognition in the high-throughput grading and sorting process of fresh table potatoes, a method for detecting potato sprouting and surface damage based on improved Faster R-CNN was proposed. Using Faster R-CNN as the baseline network, the feature extraction network in Faster R-CNN was replaced with the residual network (ResNet50), and a feature pyramid network (FPN) integrated with ResNet50 was designed to increase the depth of the neural network. A comparative model assessment and ablation studies were performed to empirically validate the efficacy of the proposed model and its modifications. The findings delineated that the enhanced algorithm demonstrated an average precision rate of 98.89% in identifying potatoes, 97.52% in discerning sprouting events, and 92.94% in recognizing surface defects. When benchmarked against the Faster R-CNN model, the adapted model incurred no additional computational time or memory overhead while manifesting a marginal decline of 0.04 percentage points in potato identification accuracy. Notably, it significantly elevated the average precision in detecting sprouting and surface imperfections by 7.79 percentage points and 34.54 percentage points, respectively. This augmented model was robust in high-resolution imaging environments facilitated by industrial-grade cameras and served as a cornerstone for the methodological advancement of automated grading and sorting processes in the commercial potato industry.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉毅君,何亞凱,吳曉媚,王文杰,張麗娜,呂黃珍.基于改進Faster R-CNN的馬鈴薯發(fā)芽與表面損傷檢測方法[J].農(nóng)業(yè)機械學報,2024,55(1):371-378. LIU Yijun, HE Yakai, WU Xiaomei, WANG Wenjie, ZHANG Li'na, Lü Huangzhen. Potato Sprouting and Surface Damage Detection Method Based on Improved Faster R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):371-378.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-08-02
  • 出版日期: