亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于POE模型的工業(yè)機器人運動學參數(shù)二次辨識方法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(51905258)、中國博士后科學基金項目(2019M650095)和南京工程學院校級科研基金項目(TB202317032)


Quadratic Identification Method of Kinematic Parameters of Industrial Robots Based on POE Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對工業(yè)機器人在高度制造領(lǐng)域精度不高的問題,本文提出了一種基于POE模型的工業(yè)機器人運動學參數(shù)二次辨識方法。闡述了基于指數(shù)積(Product of exponential,POE)模型的運動學誤差模型構(gòu)建方法,并建立基于POE誤差模型的適應(yīng)度函數(shù);為實現(xiàn)高精度的參數(shù)辨識,提出了一種二次辨識方法,先利用改進灰狼優(yōu)化算法(Improved grey wolf optimizer, IGWO)實現(xiàn)運動學參數(shù)誤差的粗辨識,初步將Staubli TX60型機器人的平均位置誤差和平均姿態(tài)誤差分別從(0.648mm,0.212°)降低為(0.457mm,0.166°);為進一步提高機器人的精度性能,再通過LM(Levenberg-Marquard)算法進行參數(shù)誤差的精辨識,最終將Staubli TX60型機器人平均位置誤差和平均姿態(tài)誤差進一步降低為(0.237mm,0.063°),機器人平均位置誤差和平均姿態(tài)誤差分別降低63.4%和70.2%。為了驗證上述二次辨識方法的穩(wěn)定性,隨機選取5組辨識數(shù)據(jù)集和驗證數(shù)據(jù)集進行POE誤差模型的參數(shù)誤差辨識,結(jié)果表明提出的二次辨識方法能夠穩(wěn)定、精確地辨識工業(yè)機器人運動學參數(shù)誤差。

    Abstract:

    Aiming at the problem of insufficient precision performance of industrial robots in the high-end manufacturing field, a quadratic identification method of kinematic parameters of industrial robots based on POE model was proposed. Firstly, the construction method of the POE kinematic error model was presented. The fitness function based on the POE kinematic error model was established for kinematics identification. Secondly, a quadratic identification method was proposed to realize the parameter identification with high precision. At first, the improved grey wolf optimizer algorithm was applied to realize the primary identification of kinematic errors. The average comprehensive position error and average comprehensive attitude error of the Staubli TX60 robot were reduced from (0.648mm,0.212°) to (0.457mm,0.166°) respectively. In order to further improve the accuracy performance of the robot, the accurate identification of kinematic errors was carried out through the LM (Levenberg-Marquard) algorithm. The average comprehensive position error and average comprehensive attitude error of the Staubli TX60 robot were reduced to (0.237 mm, 0.063°). The average comprehensive position error and average comprehensive attitude error were reduced by 63.4% and 70.2%. Finally, in order to verify the stability of the above quadratic identification method, five different sets of identification datasets and validation datasets were randomly selected for the parameter error identification of the POE error model. The results showed that the proposed quadratic identification method was able to stably and accurately identify the kinematic parameter errors of industrial robots.

    參考文獻
    相似文獻
    引證文獻
引用本文

喬貴方,杜寶安,張穎,田榮佳,劉娣,劉漢忠.基于POE模型的工業(yè)機器人運動學參數(shù)二次辨識方法研究[J].農(nóng)業(yè)機械學報,2024,55(1):419-425. QIAO Guifang, DU Baoan, ZHANG Ying, TIAN Rongjia, LIU Di, LIU Hanzhong. Quadratic Identification Method of Kinematic Parameters of Industrial Robots Based on POE Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(1):419-425.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-08-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-10-26
  • 出版日期: