亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于輕量化U-Net網(wǎng)絡(luò)的果園壟間路徑識(shí)別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

安徽省高校科研計(jì)劃項(xiàng)目(2022AH050872)和電氣傳動(dòng)與控制安徽省重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(DQKJ202203)


Path Recognition Method of Orchard Ridges Based on Lightweight U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前果園壟間導(dǎo)航路徑識(shí)別方法存在準(zhǔn)確性與實(shí)時(shí)性難以同時(shí)兼顧、泛化能力弱等問(wèn)題,本文在U-Net模型的基礎(chǔ)上進(jìn)行優(yōu)化,采用MobileNet-v3 Large作為U-Net的主干特征提取網(wǎng)絡(luò),并在跳躍連接處引入坐標(biāo)注意力機(jī)制(Coordinate attention,CA),構(gòu)建輕量化路徑識(shí)別模型。以該模型分割的壟間可行駛區(qū)域?yàn)榛A(chǔ),利用最小二乘法重塑可行駛區(qū)域邊緣點(diǎn),并進(jìn)一步提取壟間導(dǎo)航線。首先采用數(shù)據(jù)增強(qiáng)的草莓壟間數(shù)據(jù)集進(jìn)行模型訓(xùn)練,并進(jìn)一步遷移到葡萄和藍(lán)莓?dāng)?shù)據(jù)集上進(jìn)行權(quán)重微調(diào),以提高模型適應(yīng)能力。最后在相應(yīng)的驗(yàn)證集上進(jìn)行導(dǎo)航路徑識(shí)別,并通過(guò)可視化對(duì)比不同模型識(shí)別結(jié)果,以驗(yàn)證模型準(zhǔn)確性。試驗(yàn)結(jié)果表明,網(wǎng)絡(luò)模型在草莓、藍(lán)莓和葡萄果園壟間路徑識(shí)別的平均交并比分別為98.06%、97.36%和98.50%,平均像素準(zhǔn)確度分別達(dá)到99.13%、98.75%和99.29%。模型處理RGB圖像分割可行駛區(qū)域的理論推理速度可達(dá)19.23f/s,滿足導(dǎo)航實(shí)時(shí)性和準(zhǔn)確性的要求。

    Abstract:

    In response to the issues of accuracy and speed being difficult to balance simultaneously, as well as the weak generalization ability in the current navigation path recognition methods of fruit ridges, an optimization approach was proposed based on the U-Net model. The optimization involved integrating MobileNet-v3 Large as the backbone feature extraction network for U-Net and introducing coordinate attention at the skip connections to construct a lightweight path recognition model. Based on the drivable area segmented by this model in the inter-ridge, the edge points of the area were reshaped by using the least squares method, and further the inter-ridge navigation lines were extracted. Firstly, the model was trained on the augmented strawberry interrow dataset, and further migrated to the grape and blueberry datasets for weight fine-tuning to improve the model’s adaptability. Finally, the navigation path was identified on the corresponding verification set, and the recognition results of different models were compared visually to verify the accuracy of the model. Experimental results demonstrated that the model achieved an average intersection over union of 98.06%, 97.36%, and 98.50% for strawberry, blueberry, and grape interridge navigation path segmentation accuracy respectively, and the average pixel accuracy reached 99.13%, 98.75%, and 99.29%. The theoretical reasoning speed of the model for segmenting of RGB images was up to 19.23f/s, and the average time from image input to completed path extraction was 0.211s, meeting the requirements of real-time navigation and accuracy. A method of path extraction based on semantic segmentation was proposed, which provided a general method for the navigation of agricultural machinery equipment in interridge operation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

侯文慧,周傳起,程炎,王玉偉,劉路,秦寬.基于輕量化U-Net網(wǎng)絡(luò)的果園壟間路徑識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(2):16-27. HOU Wenhui, ZHOU Chuanqi, CHENG Yan, WANG Yuwei, LIU Lu, QIN Kuan. Path Recognition Method of Orchard Ridges Based on Lightweight U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):16-27.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-09-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼