亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Landsat8與Sentinel-1遙感圖像融合的土壤含水率反演模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51979234、52279047、52179044、51979232)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD1900404)


Soil Moisture Content Inversion Model Based on Landsat8 and Sentinel-1 Image Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對當(dāng)前運(yùn)用單一光學(xué)衛(wèi)星反演土壤含水率時易受到云的影響,單一SAR衛(wèi)星反演土壤含水率時易受到地表粗糙度和植被影響的問題,以內(nèi)蒙古河套灌區(qū)沙壕渠為研究區(qū)域,以4個深度的土壤含水率為研究對象,分別采用主成分分析(PCA)、施密特正交變換(GS)融合Landsat8和Sentinel-1圖像以減少云、植被、土壤粗糙度的影響,并對融合后的圖像質(zhì)量進(jìn)行評價,然后用融合圖像的灰度構(gòu)建1134種遙感指數(shù),基于相關(guān)系數(shù)分析、變量投影重要性分析、灰色關(guān)聯(lián)分析3種變量篩選方法與BP神經(jīng)網(wǎng)絡(luò)(BP)、極限學(xué)習(xí)機(jī)(ELM)、隨機(jī)森林(RF)、支持向量機(jī)(SVM)4種機(jī)器學(xué)習(xí)算法的耦合模型反演沙壕渠土壤含水率。研究結(jié)果表明:經(jīng)PCA、GS融合后的融合圖像可同時保持Sentinel-1和Landsat8圖像的優(yōu)勢,并成功定量反演土壤含水率?;谌诤蠄D像構(gòu)建的三維指數(shù)普遍比二維指數(shù)對土壤含水率更敏感。在表層土壤含水率反演中,基于GS融合的VIP-ELM模型精度最高(決定系數(shù)R2=0.66,均方根誤差(RMSE)為1.35%)。將GS融合的VIP-ELM模型應(yīng)用于其他土壤深度含水率的反演后發(fā)現(xiàn),20~40cm反演精度最高(R2=0.79,RMSE為0.94%),其次是0~10cm、40~60cm、10~20cm。該研究可為多源衛(wèi)星圖像融合反演土壤含水率提供參考。

    Abstract:

    To address the current problems that a single optical satellite is easily affected by clouds and SAR satellite is easily affected by vegetation and soil roughness when being applied into soil moisture content inversion, taking Shahaoqu of Hetao Irrigation Area as study area, and taking soil moisture content of four depths in April 2019 as study object, PCA and GS were used to fuse Landsat8 and Sentinel-1 images and the quality of the fused images was evaluated. Then a total of 1134 remote sensing indices were constructed with the gray value of the fused images, and soil moisture content inversion models were constructed based on three variable screening methods (correlation coefficient analysis, variable projection importance analysis and gray correlation analysis) and four machine learning algorithms (BP, ELM, RF, and SVM). The study results showed that the fused images of PCA and GS fusion could successfully maintain the advantages of both Sentinel-1 and Landsat8 images in quantitatively inversion of soil moisture content. The three-dimension indices constructed based on the fused images were generally more sensitive to soil moisture content than two-dimension indices constructed based on fused images. The VIP-ELM model based on GS fusion had the highest accuracy in the surface soil moisture content inversion (R2=0.66, RMSE was 1.35%). When VIP-ELM model based on GS fusion was applied to the soil moisture content inversion at all depths, 20~40cm achieved the best performance (R2=0.79, RMSE was 0.94%), followed by 0~10cm, 40~60cm and 10~20cm. This finding can provide a strong reference for using multi-source satellite image fusion to monitor soil moisture content.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳俊英,項(xiàng)茹,賀玉潔,吳雨簫,殷皓原,張智韜.基于Landsat8與Sentinel-1遙感圖像融合的土壤含水率反演模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2024,55(2):208-219. CHEN Junying, XIANG Ru, HE Yujie, WU Yuxiao, YIN Haoyuan, ZHANG Zhitao. Soil Moisture Content Inversion Model Based on Landsat8 and Sentinel-1 Image Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):208-219.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼