亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機(jī)多光譜影像的矮林芳樟葉片含水率與葉水勢反演
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(52269013、32060333)、江西省自然科學(xué)基金面上項目(20232BAB205031)、江西省主要學(xué)科學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)計劃青年項目(20204BCJL23046)、江西省科技廳重大科技專項(20203ABC28W016-01-04)和江西省林業(yè)局樟樹研究專項(202007-01-04)


Inversion of Leaf Water Content and Leaf Water Potential of Cinnamomum camphora Based on UAV Multispectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    葉片含水率和葉水勢反映植物組織中水分的狀態(tài),是衡量植物水分供應(yīng)和水分利用效率的重要指標(biāo)。為探究基于不同高度下無人機(jī)多光譜影像反演葉片含水率和葉水勢模型的差異,本研究在3個飛行高度處理F30、F60、F100 (30、60、100m)下采集多光譜影像數(shù)據(jù),通過使用6種光譜反射率+經(jīng)驗(yàn)植被指數(shù)的組合與地面實(shí)測數(shù)據(jù)進(jìn)行相關(guān)性分析,獲得不同飛行高度下的光譜反射率+經(jīng)驗(yàn)植被指數(shù)組合與葉片含水率和葉水勢的反演模型及其決定系數(shù),以決定系數(shù)為依據(jù)分別構(gòu)建支持向量機(jī)(SVM)、隨機(jī)森林(RF)和徑向基神經(jīng)網(wǎng)絡(luò)(RBFNN)模型,分析不同飛行高度無人機(jī)多光譜影像反演芳樟葉片含水率和葉水勢的精度。結(jié)果發(fā)現(xiàn):3個飛行高度下,基于RF模型的反演精度均高于SVM模型和RBFNN模型。F30處理對葉片含水率與葉水勢反演效果均優(yōu)于F60和F100處理。F30處理對葉片含水率反演的敏感光譜反射率+植被指數(shù)組合為紅光波段反射率(R)、紅邊1波段反射率(RE1)、紅邊2波段反射率(RE2)、近紅外波段反射率(NIR)、增強(qiáng)型植被指數(shù)(EVI)、土壤調(diào)節(jié)植被指數(shù)(SAVI)。RF模型訓(xùn)練集的R2、RMSE、MRE分別為0.845、0.548%、0.712%;測試集的R2、RMSE、MRE分別為0.832、0.683%、0897%。對葉水勢反演的敏感光譜反射率+植被指數(shù)組合為R、RE2、NIR、EVI、SAVI、花青素反射指數(shù)(ARI)。RF模型訓(xùn)練集的R2、RMSE、MRE分別為0.814、0.073MPa、3.550%;測試集的R2、RMSE、MRE分別為0.806、0.095MPa、4.250%。研究結(jié)果表明飛行高度30m與RF方法分別為反演葉片含水率和葉水勢的最優(yōu)光譜獲取高度與最優(yōu)模型構(gòu)建方法。本研究可為基于無人機(jī)平臺的矮林芳樟水分監(jiān)測提供技術(shù)支持,并可為篩選無人機(jī)多光譜波段與經(jīng)驗(yàn)植被指數(shù)、實(shí)現(xiàn)植物長勢參數(shù)快速估測提供應(yīng)用參考。

    Abstract:

    Leaf water content and leaf water potential reflect the state of water in plant tissues and are important indicators of plant water availability and water use efficiency. To investigate the differences in leaf water content and leaf water potential modelling based on UAV multispectral image inversion at different altitudes, multispectral image data were collected at three flight altitude treatments F30, F60, and F100 (30m, 60m, and 100m). By using six combinations of spectral reflectance + empirical vegetation index (EVI) and ground data for correlation analysis, the inversion models and their decision coefficients of the combinations of spectral reflectance + EVI with leaf water content and leaf water potential at different flight altitudes were obtained. Support vector machine (SVM), random forest (RF) and radial basis neural network (RBFNN) models were constructed based on the determination coefficients to analyze the accuracy of UAV multispectral inversion models for leaf water content and leaf water potential of aromatic camphor at different flight altitudes. It was found that the inversion accuracy of the RF-based model was higher than that of the SVM model and the RBFNN model at all three flight altitudes. The F30 treatment was better than the F60 and F100 treatments for leaf water content and leaf water potential inversion. The sensitive spectral reflectance+vegetation index combinations for leaf water content inversion in the F30 treatment were reflectance in the red band (R), reflectance in the red-edge 1 band (RE1), reflectance in the red-edge 2 band (RE2), near-infrared reflectance (NIR), and enhanced vegetation index (EVI), soil adjusted vegetation index (SAVI). The R2, RMSE, and MRE for the training set of the RF model were 0.845, 0.548% and 0.712%, respectively;and for the test set, the R2, RMSE, and MRE were 0.832, 0.683% and 0.897%, respectively. The sensitive spectral reflectance + vegetation index combinations for leaf water potential inversion were R, RE2, NIR, EVI, SAVI, anthocyanin reflectance index (ARI). The R2, RMSE, and MRE for the training set of the RF model were 0.814, 0.073MPa and 3.550%, respectively;and for the test set, R2, RMSE, and MRE were 0.806, 0.095MPa and 4.250%. The results showed that the 30m flight altitude and RF method were the optimal spectral acquisition altitude and optimal model construction method for inverting leaf water content and leaf water potential, respectively. The research result can provide technical support for the moisture monitoring of Cinnamomum camphora based on UAV platform, and can provide application reference for screening UAV multispectral bands and empirical vegetation indices, and realising rapid estimation of plant growth parameters.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊寶城,魯向暉,張海娜,王倩,陳志琪,張杰.基于無人機(jī)多光譜影像的矮林芳樟葉片含水率與葉水勢反演[J].農(nóng)業(yè)機(jī)械學(xué)報,2024,55(2):220-230,267. YANG Baocheng, LU Xianghui, ZHANG Haina, WANG Qian, CHEN Zhiqi, ZHANG Jie. Inversion of Leaf Water Content and Leaf Water Potential of Cinnamomum camphora Based on UAV Multispectral Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(2):220-230,267.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-07-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2024-02-10
  • 出版日期:
文章二維碼